Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài hay quá!
Theo bất đẳng thức Cô-Si cho 3 số dương ta có
\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\sqrt[3]{\left(1+\frac{1}{a}\right)^4\left(1+\frac{1}{b}\right)^4\left(1+\frac{1}{c}\right)^4}\).
Do đó ta chỉ cần chứng minh \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3.\) (Lúc đó kết hợp hai bất đẳng thức ta được ngay điều phải chứng minh).
Thực vậy, đầu tiên áp dụng bất đẳng thức Cô-Si cho 3 số dương ta có
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{1}{abc}\ge\)
\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{a^2b^2c^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3.\)
Mặt khác ta có \(2+abc=1+1+abc\ge3\sqrt[3]{abc}\to\frac{1}{\sqrt[3]{abc}}\ge\frac{3}{2+abc}\to\)
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3.\) (ĐPCM)
xin lỗi nhé bên trên do đánh nó không hiện nên tưởng không viết được ,
Cộng từng vế của 3 bđt cùngc hiều ta có \(A+\frac{a+b+c+3}{4}>=\frac{3}{4}\left(a+b+c\right)\)
=> \(A>=\frac{a+b+c}{2}-\frac{3}{4}\)
Áp dụng bđts cô si ta có a+b+c>=\(3\sqrt[3]{abc}=3\)
=> A>=\(\frac{3}{4}\)
mình làm hơi tắt cậu chịu khó đọc nhé
bài này Áp dụng bất đẳng thức cô si nhé
đặt \(A=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
ta có Áp dựng bất đẳng thức cô si ta có \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}>=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
tương tự ta có \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}>=\frac{3b}{4}\)
\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1_{1+a}}{8}+\frac{1+b}{8}>=\frac{3c}{4}\)
cộng từng vế của 3 bđt cùng chiều ta có \(A>=\frac{3\left(a+b+c\right)}{4}\)
mà
Đặt: \(\hept{\begin{cases}\frac{1-a}{1+a}=x\\\frac{1-b}{1+b}=y\\\frac{1-c}{1+c}=z\end{cases}}\)
\(\Rightarrow-1< x,y,z< 1\)và \(\hept{\begin{cases}\frac{1-x}{1+x}=a\\\frac{1-y}{1+y}=b\\\frac{1-z}{1+z}=c\end{cases}}\)
Theo đề bài ta có: \(abc=1\Rightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
\(\Rightarrow x+y+z+xyz=0\)
Mặt khác ta có: \(\frac{4a}{\left(a+1\right)^2}=1-x^2;\frac{2}{a+1}=1+x\)
Và: \(\frac{4b}{\left(b+1\right)^2}=1-y^2;\frac{2}{b+1}=1+y\)
Và: \(\frac{4c}{\left(c+1\right)^2}=1-z^2;\frac{2}{c+1}=1+z\)
Nên: \(\frac{4a}{\left(a+1\right)^2}+\frac{4b}{\left(b+1\right)^2}+\frac{4c}{\left(c+1\right)^2}\le1+2.\frac{2}{a+1}.\frac{2}{b+1}.\frac{2}{c+1}\)
\(\Leftrightarrow x^2+y^2+z^2+\left(xy+yz+zx\right)+2\left(x+y+z+xyz\right)\ge0\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge0\)
Đây là BĐT luôn đúng nên ta có đpcm.
ミ★ᗪเệų ℌųуềй (ßăйǥ ßăйǥ ²к⁶)★彡 Giải ghê quá, t chẳng hiểu gì.
Đặt \(\left(a;b;c\right)=\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)
BĐT \(\Leftrightarrow \sum\limits_{cyc} \frac{xy}{(x+y)^2} \leq \frac{1}{4}+\frac{4xyz}{(x+y)(y+z)(z+x)}\)
Ta có: \(VP-VT=\frac{4\left(x-y\right)^2\left(y-z\right)^2\left(z-x\right)^2}{4\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\ge0\)
BĐT hiển nhiên đúng.
ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)
\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\) (vì abc=1) (*)
Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\) (vì abc=1)
=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\) (**)
Từ (*), (**)=> đpcm
Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3
\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)
Tương tự rồi cộng lại:
\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1
Bạn tham khảo tại đây:
Câu hỏi của Trần Hữu Ngọc Minh - Toán lớp 9 - Học toán với OnlineMath
Áp dụng BĐT Cosi ta được:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)64}}=\frac{3a}{4}̸\)
Tương tự \(\hept{\begin{cases}\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{1+a}{8}+\frac{1+c}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)
Cộng theo từng vế BĐT trên ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{a+b+c}{2}\)
Vì \(a+b+c\ge3\sqrt[3]{abc}=3\)do đó:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
bài 2 thì bạn áp dụng bdt cô si với lựa chọn điểm rơi hoặc bdt holder ( nó giống kiểu bunhia ngược ) . bai 1 thi ap dung cai nay \(\frac{1}{x}+\frac{1}{y}>=\frac{1}{x+y}\) câu 1 khó hơn nhưng bạn biết lựa chọn điểm rơi với áp dụng bdt phụ kia là ok .
Bài 1:Đặt VT=A
Dùng BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)x,y,z>0\)
Áp dụng vào bài toán trên với x=a+c;y=b+a;z=2b ta có:
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Tương tự với 2 cái còn lại
\(A\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)
\(\Rightarrow A\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)
Đẳng thức xảy ra khi a=b=c
Bài 2:
Biến đổi BPT \(4\left(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\right)\ge3\)
\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
Dự đoán điểm rơi xảy ra khi a=b=c=1
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
Tương tự suy ra
\(VT\ge\frac{2\left(a+b+c\right)-3}{4}\ge\frac{2\cdot3\sqrt{abc}-3}{4}=\frac{3}{4}\)
Áp dụng BĐT Cô-si cho 3 số dương ta có:
\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(\sqrt[3]{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)}\right)^4\)
Ta chứng minh: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3\left(1\right)\)
Theo BĐT Cô - si ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\)
\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{\left(abc\right)^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\ge\left(1+\frac{3}{2+abc}\right)^3\)
(Vì \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\))
Vậy \(\left(1\right)\) được chứng minh \(\Rightarrow BĐT\) đúng \(\forall a,b,c>0\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\right]^4}\)
\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\left(1\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\\\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\end{cases}}\)
\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge1+3\sqrt[3]{\frac{1}{abc}}\)
\(+3\sqrt[3]{\frac{1}{a^2b^2c^2}}+\frac{1}{abc}\)
\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\)
\(\Rightarrow3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\)
\(\ge3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\)
\(\left(2\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{abc}\le\frac{abc+1+1}{3}=\frac{abc+2}{3}\)
\(\Rightarrow1+\frac{1}{\sqrt[3]{abc}}\ge1+\frac{3}{abc+2}\)
\(\Rightarrow3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\frac{3}{abc+2}\right)^4\left(3\right)\)
Từ (1) , (2) và (3)
\(\Rightarrow VT\ge3\left(1+\frac{3}{abc+2}\right)^4\)
\(\Leftrightarrow\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(1+\frac{3}{2+abc}\right)^4\left(đpcm\right)\)
Chúc bạn học tốt !!!