\(abc+bcd+cda+dab=a+b+c+d+\sqrt{2016}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

\(\sqrt{2012}=\left(abc+bcd-a-d\right)+\left(cda+dab-c-b\right)\)

\(=\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\)

\(\Rightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\right]^2\)

\(\le\left[\left(bc-1\right)^2+\left(c+b\right)^2\right]\left[\left(a+d\right)^2+\left(ad-1\right)^2\right]\)

\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)

12 tháng 12 2017

Ta có:

\(\sqrt{2012}=abc+bcd+cda+dab-a-b-c-d=\left(bc-1\right)\left(a+d\right)+\left(ad-1\right)\left(b+c\right)\)

\(\Leftrightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(ad-1\right)\left(b+c\right)\right]^2\)

\(\le\left[\left(bc-1\right)^2+\left(b+c\right)^2\right]\left[\left(ad-1\right)^2+\left(a+d\right)^2\right]\)

\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)

12 tháng 12 2017

\(GT\Leftrightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(a+c\right)\left(ad-1\right)\right]^2\le\left[\left(bc-1\right)^2+\left(b+c^2\right)\right]\)

\(\left[\left(ad-1\right)^2+\left(a+d\right)^2\right]=\left(b^2+1\right)\left(c^2+1\right)\left(a^2+1\right)\left(d^2+1\right)\)

P/s: Mình không chắc đâu ! Tham khảo nha!

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)

2 tháng 9 2018

Ta có: \(a^2+b^2+c^2+d^2\ge4\sqrt[4]{\left(abcd\right)^2}=4\)(AM-GM) (abcd=1)

Lại có: \(a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\)

\(=ab+ac+bc+bd+cd+ac+ad+bd\)

\(\ge8\sqrt[8]{\left(abcd\right)^4}=8\)(AM-GM)

Từ đó: 

\(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\ge4+8=12\)

=> ĐPCM. Dấu "=" xảy ra <=> a=b=c=d=1.

23 tháng 2 2022

Vì \(abc=1\)nên trong 3 số a,b,c luôn có 2 số nằm cùng phía so với 1.

Không mất tính tổng quát ta giả sử 2 số đó là a và b, khi đó ta có:

\(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a+b\le1+ab=\frac{c+1}{c}\)

Do đó ta được:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(1+a+b+ab\right)\left(c+1\right)\)

\(=2\left(1+ab\right)\left(1+c\right)\le\frac{2\left(c+1\right)^2}{c}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{1}{\left(1+ab\right)\left(1+\frac{a}{b}\right)}+\frac{1}{\left(1+ab\right)\left(1+\frac{b}{a}\right)}\)

\(=\frac{b}{\left(1+ab\right)\left(a+b\right)}+\frac{a}{\left(1+ab\right)\left(a+b\right)}=\frac{1}{1+ab}=\frac{c}{c+1}\)

Do đó ta được:

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+c\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\ge\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}+\frac{c}{\left(c+1\right)^2}=\frac{c\left(c+1\right)+1+c}{\left(c+1\right)^2}=1\)

Như vậy bất đẳng thức ban đầu được chứng minh. Đẳng thức xẩy ra khi \(a=b=c=1\).

22 tháng 2 2019

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=xyz\) thì bài toán trở thành

Cho \(x+y+z=xyz\) chứng minh

\(P=xyz+\frac{x^2y^2z^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{9\sqrt{3}}{3}\)

Ta có:

\(t=x+y+z=xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{t^3}{27}\)

\(\Leftrightarrow t\ge3\sqrt{3}\)

Ta lại có:

\(P\ge\left(x+y+z\right)+\frac{\left(x+y+z\right)^2}{\frac{8\left(x+y+z\right)^3}{27}}=t+\frac{27}{8t}\)

\(=\left(t+\frac{27}{t}\right)-\frac{189}{8t}\ge6\sqrt{3}-\frac{189}{8.3\sqrt{3}}=\frac{27\sqrt{3}}{8}\)

   PS: Đề sai rồi nha.

22 tháng 2 2019

Đề ko sai đâu ạ, anh giải lại giúp em với