K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

Ta có:

\(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)

\(a\) là số nguyên dương

\(\Rightarrow a;a\left(a-1\right)\) là hai số tự nhiên liên tiếp

\(\Rightarrow a\left(a-1\right)⋮2\). Tương tự: \(\left\{\begin{matrix}b\left(b-1\right)⋮2\\c\left(c-1\right)⋮2\\d\left(d-1\right)⋮2\end{matrix}\right.\)

\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn

Lại có:

\(a^2+c^2=b^2+d^2\)

\(\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn

Do đó \(a+b+c+d\) là số chẵn \(\left(1\right)\)

\(\Rightarrow a+b+c+d>2\)\((a,b,c,d\) \(\in\) \(N*)\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow a+b+c+d\) là hợp số (Đpcm)

29 tháng 3 2019

Xét \(A=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}-a-b-c-d-e=a\left ( a-1 \right )+b\left ( b-1 \right )+c\left ( c-1 \right )+d\left ( d-1 \right )+e\left ( e-1 \right )\)

Mà a , a-1 là 2 số nguyên liên tiếp

\(\Rightarrow a\left ( a-1 \right )\vdots 2\) 

Theo chứng minh trên 

\(\Rightarrow b\left ( b-1 \right ),c\left ( c-1 \right ), d\left ( d-1 \right ), e\left ( e-1 \right )\vdots 2\)

\(\Rightarrow A\vdots 2\) mà \(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}\vdots 2\)

\(\Rightarrow a+b+c+d+e\vdots 2\)

MÀ a,b,c,d,e nguyên dương nên \(a+b+c+d+e > 2\)

\(\Rightarrow a+b+c+d+e\) là hợp số.

 
22 tháng 11 2023

Ta có

\(a^2+b^2+c^2+d^2+a+b+c+d=\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta thấy

\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số tự nhiên liên tiếp nên các tích trên đều chia hết cho 2

\(\Rightarrow a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)⋮2\)

\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)⋮2\)

Ta có

\(a^2+c^2=b^2+d^2\Rightarrow\left(a^2+b^2+c^2+d^2\right)=2\left(b^2+d^2\right)⋮2\)

\(\Rightarrow a^2+b^2+c^2+d^2⋮2\)

\(\Rightarrow a+b+c+d⋮2\)

=> a+b+c+d là hợp số

7 tháng 1 2018

b, Có: a/b < c/d => ad < bc

 Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0

=> a.(b+d) < b.(a+c)

=> a/b < a+c/b+d

c, Đề phải là cho a+b+c = 2016 chứ bạn

Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a

Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0

=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1

Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1

=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2

=> 1 < A < 2

=> A ko phải là số tự nhiên

Tk mk nha

7 tháng 1 2018

a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.

TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)

5 tháng 3 2020

Xét:\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)\left(d^2+d\right)\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta có: \(a.\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho 2

\( \implies\)\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho 2

Mà \(a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) chia hết cho 2

\( \implies\) \(a+b+c+d\) chia hết cho 2

Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số (đpcm)

27 tháng 1 2016

có ai tick mk ko zậy 

28 tháng 1 2016

dễ 

12 tháng 2 2020

thieu dau bài?

2 tháng 1 2020

1. Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath

1) 

Ta có : 

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{1}{c}.\frac{2}{1}=\frac{\left(a+b\right)}{ab}\)

\(\Leftrightarrow\frac{2}{c}=\frac{\left(a+b\right)}{ab}\)

\(\Leftrightarrow2ab=ac+bc\)                (1)

Lại có :

 \(\frac{a}{b}=\frac{a-c}{c-b}\)

\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Leftrightarrow ac-ab=ab-bc\)

\(\Leftrightarrow2ab=ac+bc\)            (2)

Từ (1) và (2) :

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)