K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

30 tháng 7 2017

Bài 1 : 

1. a, 5\(^{2x-3}\)-2.5\(^2\)=5\(^2\).3

       5\(^{2x}\) : 5\(^3\) -2.25    = 25.3

       5\(^{2x}\):  5\(^3\) - 50      = 75

        5\(^{2x}\): 5\(^3\)            = 75+50

        5\(^{2x}\): 5\(^3\)            = 125

         5\(^{2x}\)                = 125.5\(^3\)

         5\(^{2x}\)                = 5\(^3\). 5\(^3\)

          5 \(^{2x}\)              = 5\(^{3+3}\)

          5 \(^{2x}\)               = 5\(^6\)  

Có 5=5 => 2x = 6

                  x = 6 : 2

                  x = 3

           Vậy x = 3.

b. / 2x -1 / = 5

=> 2x-1 = 5 hoặc 2x-1 = -5

* Với 2x - 1 = 5                                                                                      

thì     2x      = 5+1

        2x       = 6

          x       = 6:2

         x        = 3  

* Với 2x - 1 = - 5

thì     2x      = -5 + 1

         2x     = -4

           x      = -4 : 2

           x      = -2

21 tháng 7 2018

\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

= \(\dfrac{a^3+a.c.b+b.d.c}{a.c.b+b.d.c+d^3}\)

= \(\dfrac{a^3}{d^3}=\dfrac{a}{d}\)

Đề có sai k bạn ??

21 tháng 7 2018

to bi nham

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1

a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*

=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

b) tương tự ta có \(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)

\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

bài 2 chịu

19 tháng 7 2018

Bài 1:

Tao có:

\(81^7mod\left(405\right)\)

\(81^3\equiv81mod\left(405\right)\)

\(81^6\equiv81^2\equiv81mod\left(405\right)\)

\(81^7\equiv81^2.81\equiv81mod\left(405\right)\)

Ta có:

\(27^9mod\left(405\right)\)

\(27^3\equiv243mod\left(405\right)\)

\(27^9\equiv243^3\equiv162mod\left(405\right)\)

Ta có:

\(9^{13}mod\left(405\right)\)

\(9\equiv9mod\left(405\right)\)

\(9^3\equiv324mod\left(405\right)\)

\(9^9\equiv324^3\equiv324mod\left(405\right)\)

\(9^{10}\equiv324.9\equiv81mod\left(405\right)\)

\(9^{13}\equiv81.324\equiv324mod\left(405\right)\)

\(81^7+27^9-9^{13}:405=81+162-324:405=-0,2\)

\(\Rightarrow81^7+27^9-9^{13}⋮405\left(đpcm\right)\)

Casio không biết có áp dụng ntn vào bài này được không nữa? Nhưng mình ôn hổm rày thấy có bài gần giống vậy, nên mình làm thử bạn tham khảo nha chúc bạn học tốt! ^^

20 tháng 7 2018

Yukina Trần Bài trên không chia hết nha bạn, hôm qua mình nhầm, nếu chia hết thì phải ra số nguyên chứ không phải số thập phân :)) Nếu giải vậy mà không chia hết thì đề sai hoặc là kết luận vô lí nha bạn. Mình xin lỗi! Hì, à chắc còn nhưng mình chỉ biết cách giải bằng máy casio này thui bạn ^^