K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

Chết đăng lộn

Ta có: a > b, c > d

a + b > c + d

1. a + b > b + b (Cộng hai vế với b)

và c + d > d + d (cộng hai vế với d)

2. a + b < a + a (cộng hai vế với a)

và c + d < c + c (cộng hai vế với c)

Ta xét:

1. a + b > c + d

\(\Rightarrow\) b + b > d + d

hay b > d (1)

2. a + b > c + d

\(\Rightarrow\) a + a > c + c

hay a > c (2)

Từ (1) và (2): a + b > c + d (đpcm)

Chúc bn học tốt!!

2 tháng 5 2020

Đề cho bạn nhé.

5 tháng 4 2019

Có:\(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\)

\(\Rightarrow ac>bd\)

\(\Leftrightarrow\frac{a}{d}>\frac{b}{c}\)

đpcm

AH
Akai Haruma
Giáo viên
23 tháng 8 2019

Lời giải:

Nếu $a\geq b$

Từ $b>c+d$

$\Rightarrow ba> ac+ad$. Mà $ac\geq bc$ do $a\geq b$

$\Rightarrow ba>bc+ad$ (1)

Nếu $a< b$

Từ $a>c+d$

$\Rightarrow ab>bc+bd$. Mà $bd> ad$ do $a< b$

$\Rightarrow ab>bc+ad$ (2)

Từ (1) và (2) ta có đpcm.

22 tháng 7 2020

Ta có: \(\hept{\begin{cases}a>c+d\\b>c+d\end{cases}\Leftrightarrow\hept{\begin{cases}a-c>d\\b-d>c\end{cases}\Rightarrow}\left(a-c\right)\left(b-d\right)>cd\Leftrightarrow ab-bc-ad+cd>cd}\Leftrightarrow ab>ad+bc\)

a, \(a>b\) nên \(a-b>0\)

\(c>d\) nên \(c-d>0\)

Do đó : \(a-b+c-d>0\)

\(\Leftrightarrow a+c-\left(b+d\right)>0\)

\(\Leftrightarrow a+c>b+d\)

b, \(a>b>0\)nên \(\frac{a}{b}>1\)

\(c>d>0\)nên \(\frac{c}{d}>1\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}>1\)

\(\Leftrightarrow\frac{ac}{bd}>1\)

\(\Leftrightarrow ac>bd\)