Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)
c: \(13+\sqrt{48}=13+4\sqrt{3}=\left(2\sqrt{3}+1\right)^2\)
d: \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)
\(a,8-2\sqrt{7}=\sqrt{7}^2-2\sqrt{7}+1^2=\left(\sqrt{7}-1\right)^2\)
\(b,8-2\sqrt{15}=\sqrt{5}^2-2.\sqrt{3}.\sqrt{5}+\sqrt{3}^2=\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(c,8+4\sqrt{3}=2^2+2.2.\sqrt{3}+\sqrt{3}^2=\left(2+\sqrt{3}\right)^2\)
1. Ta có: \(d\) đi qua điểm \(M\left(1;-1\right)\) và có vec-tơ chỉ phương \(\overrightarrow{u}\left(1;2\right)\). Suy ra \(d\) có 1 vec-tơ pháp tuyến \(\overrightarrow{n}\left(2;-1\right)\).
Phương trình chính tắc của \(d:\frac{x-1}{1}=\frac{y+1}{2}\)
Phương trình tổng quát của \(d:2\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow2x-y-3=0\)
2. Ta có: \(d\) đi qua \(M\left(2;-1\right)\) và nhận vec-tơ \(\overrightarrow{u}\left(-1;2\right)\) làm vec-tơ chỉ phương. Suy ra \(d\) có 1 vec-tơ pháp tuyến \(\overrightarrow{n}\left(2;1\right)\)
Phương trình tham số chủa đường thẳng \(d:\left\{\begin{matrix}x=2-t\\y=-1+2t\end{matrix}\right.\)
Phương trình tổng quát của \(d:2\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow2x+y-3=0\)
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
1 ) \(9+4\sqrt{2}=9+2\sqrt{8}=[\left(\sqrt{8}\right)^2+2.\sqrt{8}.1+1]=\left(\sqrt{8}+1\right)^2\)
2 ) \(31+12\sqrt{3}=31+2\sqrt{108}=\left[\left(\sqrt{27}\right)^2+2.\sqrt{27}.2+2^2\right]=\left(\sqrt{27}+4\right)^2\)
Gọi pt đường thẳng có dạng \(y=ax+b\), thay tọa độ các điểm vào pt ta được:
a/ \(\left\{{}\begin{matrix}0.a+b=0\\4.a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=0\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x\)
b/ \(\left\{{}\begin{matrix}0.a+b=5\\-1.a+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) \(\Rightarrow y=2x+5\)
2 câu sau bạn tự làm tương tự
Ta có:
\(a^2+b^2+c^2+d^2=\left(b+c+d\right)^2+b^2+c^2+d^2\)
\(=2\left(b^2+c^2+d^2\right)+2\left(bd+cd+bc\right)\)
\(=\left(b^2+2bc+c^2\right)+\left(c^2+2cd+d^2\right)+\left(d^2+2db+b^2\right)\)
\(=\left(b+c\right)^2+\left(c+d\right)^2+\left(d+b\right)^2\)
đề có a mà sao kết quả lại mất a vậy