Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2\ge\frac{1}{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đung)
Ta chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (Đúng)
\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
Giải chi tiết cho dễ hiểu
Cách khác nè:
Áp dụng BĐT bun-hia-cop-xki ta có:
\(\left(a^2+b^2+c^2\right)\left(1+1+1\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\left(đpcm\right)\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)
Ta chứng minh:
a2 + b2 + c2 \(\ge\) ab + bc + ac
Nhân cả 2 vế với 2 ta được :
= 2a2 + 2b2 + 2c2 \(\ge\) 2ab + 2bc + 2ac
= 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac \(\ge0\)
= ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) \(\ge0\)
= ( a - b )2 + ( b - c)2 + ( a - c )2 \(\ge0\) ( luôn đúng )
\(\Rightarrow\)a2 + b2 + c2 \(\ge\)ab + bc + ac
Ta có : a2 + b2 + c2 \(\ge\)ab + bc + ac
Nhân cả 2 vế với 2 ta được :
2 ( a2 + b2 + c2 ) \(\ge\) 2 ( ab + bc + ac )
Cộng cả 2 vế với : a2 + b2 + c2 ta được :
3 ( a2 + b2 + c2 ) \(\ge\) a2 + b2 + c2 + 2ab + 2bc + 2ac
3 ( a2 + b2 + c2 ) \(\ge\) ( a + b + c )2
3 ( a2 + b2 + c2 ) \(\ge\)1
a2 + b2 + c2 \(\ge\)\(\frac{1}{3}\) ( đpcm)
Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Áp dụng cách đánh giá quen thuộc
\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\left(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\right)^2\)
Hay \(\sqrt{3\left(a^2+b^2+c^2\right)}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
Ta cần chỉ ra được \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, Cần chú ý đến \(a^2+b^2+c^2\). Ta được
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
Ta cần chứng minh được
\(\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Hay \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Dễ thấy \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Do đó \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)
Theo bất đẳng thức Bunhiacopxki
\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)
Do đó ta được \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Bài toán được chứng minh :3
Do a,b,c đối xứng , giả sử \(a\ge b\ge c\) \(\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}\ge\frac{b}{a+c}\ge\frac{c}{a+b}\end{cases}}\)
Áp dụng BĐT Trư - bê - sép , ta có :
\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{b+c}\ge\frac{a^3+b^3+c^3}{3}.\left(\frac{a}{b+C}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)
\(vậy\) \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{1}{2}\)( Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Chebyshev như vầy nhé :
Ta có :
\(3.\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\left(a^2+b^2+c^2\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Áp dụng bất đẳng thức Nesbit , ta có :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Suy ra : \(3.\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\frac{3}{2}\)
<=> \(\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\frac{1}{2}\)
Đẳng thức xảy ra <=> a = b = c = \(\frac{1}{\sqrt{3}}\)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
Áp dụng BĐT Bunhicopxki:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
Suy ra \(a^2+b^2+c^2\ge\frac{1}{3}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)