Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2\ge\frac{1}{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đung)
Ta chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (Đúng)
\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
Giải chi tiết cho dễ hiểu
Cách khác nè:
Áp dụng BĐT bun-hia-cop-xki ta có:
\(\left(a^2+b^2+c^2\right)\left(1+1+1\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\left(đpcm\right)\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)
Bài 1 :
a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
a, Ta cần phải chứng minh (a+b)(\(\frac{1}{a}+\frac{1}{b}\))=1+\(\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\ge4\) vì
\(\frac{a}{b}+\frac{b}{a}\ge2\)(cái này bạn tìm hiểu kĩ hơn nha,nhưng mk nghĩ thế này đc rồi đó)
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b.
d,(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))=1+\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
=3+(\(\frac{a}{b}+\frac{b}{a}\))+(\(\frac{a}{c}+\frac{c}{a}\))+(\(\frac{c}{b}+\frac{b}{c}\))\(\ge\)3+2+2+2=9
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b=c
e,Xét hiệu :
\(^{a^3+b^3+c^3-3abc=\left(a^2+b^2+c^2-ab-ac-bc\right)\left(a+b+c\right)}\) => cái này bạn nhân ra trước rồi phân tích đa thức thành nhân tử nha.
=\(\left(a+b+c\right)\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) \(\Rightarrow\)ĐPCM
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
a) \(a\le b\) \(\Rightarrow-a\ge-b\)
\(\Rightarrow-\frac{2}{3}a\ge-\frac{2}{3}b\) ( theo liên hệ giữa thứ tự và phép nhân )
\(\Rightarrow-\frac{2}{3}a+4\ge-\frac{2}{3}b+4\)
b) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các biến đổi trên là tương đương nên bđt ban đầu luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
Ta chứng minh:
a2 + b2 + c2 \(\ge\) ab + bc + ac
Nhân cả 2 vế với 2 ta được :
= 2a2 + 2b2 + 2c2 \(\ge\) 2ab + 2bc + 2ac
= 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac \(\ge0\)
= ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) \(\ge0\)
= ( a - b )2 + ( b - c)2 + ( a - c )2 \(\ge0\) ( luôn đúng )
\(\Rightarrow\)a2 + b2 + c2 \(\ge\)ab + bc + ac
Ta có : a2 + b2 + c2 \(\ge\)ab + bc + ac
Nhân cả 2 vế với 2 ta được :
2 ( a2 + b2 + c2 ) \(\ge\) 2 ( ab + bc + ac )
Cộng cả 2 vế với : a2 + b2 + c2 ta được :
3 ( a2 + b2 + c2 ) \(\ge\) a2 + b2 + c2 + 2ab + 2bc + 2ac
3 ( a2 + b2 + c2 ) \(\ge\) ( a + b + c )2
3 ( a2 + b2 + c2 ) \(\ge\)1
a2 + b2 + c2 \(\ge\)\(\frac{1}{3}\) ( đpcm)