K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

Lời giải:

Muốn chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\) ta chỉ cần chỉ ra \(ab+bc+ac=1\)

Thật vậy:

\((a+b+c)^2-(a^2+b^2+c^2)=2^2-2\)

\(\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)-(a^2+b^2+c^2)=2\)

\(\Leftrightarrow 2(ab+bc+ac)=2\Rightarrow ab+bc+ac=1\)

Do đó ta có đpcm.

6 tháng 10 2019

bạn nhân ra hết cho mk

6 tháng 10 2019

thanks bạn nhiều nha

19 tháng 2 2018

Áp dụng bất đẳng thức Cô-si ta có : 

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)

Dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) Hay \(a=b=c\) ( đề cho ) 

Vậy ta có đpcm : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

19 tháng 2 2018

Bạn ơi đề cho : a=b=c hay \(\left(a+b+c\right)^2=a^2+b^2+c^2\)