Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chị tham khảo nhé
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
l ike cho cái bạn chị tham khảo bài (:V
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
+) a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\Rightarrow P=-3\)
+) a+b+c khác 0 => \(\hept{\begin{cases}a=\frac{1}{2}\left(b+c\right)\\b=\frac{1}{2}\left(a+c\right)\\c=\frac{1}{2}\left(b+a\right)\end{cases}}\)
\(\Rightarrow P=\frac{3}{2}\)
Vậy: P = 3/2 hoac P=-3
Ta có:\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
*Nếu a+b+c=0
=> a=-(b+c)
b=-(a+c)
c=-(a+b)
Thay 3 ý trên vào P, ta có:
\(P=\frac{b+c}{-\left(b+c\right)}+\frac{a+c}{-\left(a+c\right)}+\frac{a+b}{-\left(a+b\right)}\)
P=-1+(-1)+(-1)
P=-3
Nếu a+b+c khác 0
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)
\(\frac{a}{b+c}=\frac{1}{2}\) => 2a=b+c (1)
\(\frac{b}{a+c}=\frac{1}{2}\) => 2b=a+c (2)
\(\frac{c}{a+b}=\frac{1}{2}\) => 2c=a+b (3)
(1)-(2)
2a-2b=b-a
3a=3b
=>a=b (4)
(2)-(3)
2b-2c=c-b
3b=3c
=>b=c (5)
Từ (4) và (5)=> a=b=c (mâu thuẫn với đề bài)
Vậy M=-3
Ta có:
a/b+c =b/a+c =c/a+b hay b+c/a =a+c/b =a+b/c =(b+c)+(a+c)+(a+b)a+b+c =2a+2b+2c/a+b+c =2(a+b+c)/a+b+c =2
=>b+c/a =2;a+c/b =2;a+b/c =2
=>P=b+c/a +a+c/b +a+b/c =2+2+2=6
Vậy P=6
câu hỏi là j