\(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\ge15\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nếu sửa đề lại thì giải theo cách này nhé :v

\(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}+6\ge15\)

\(\Leftrightarrow a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\ge9\)

Theo BĐT Bu - nhi - a - cốp xki ta có :

\(\left(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\right)^2\le\left(a^2+b^2+c^2\right)\left(a+b+c+24\right)=27\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\le\sqrt{27\left(a^2+b^2+c^2\right)}\)

Do đó ta chỉ cần chứng minh :

\(\sqrt{27\left(a^2+b^2+c^2\right)}\ge9\)

\(\Leftrightarrow\sqrt{a^2+b^2+c^2}\ge\sqrt{3}\)

\(\Leftrightarrow a^2+b^2+c^2\ge3\)

Theo BĐT Cô - Si dưới dạng en-gel ta có :

\(\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}\ge\dfrac{\left(a+b+c\right)^2}{1+1+1}=\dfrac{3^2}{3}=3\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=1\)

5 tháng 8 2018

Đúng là đề bài khó wá hihahihahiha hihi =)))

6 tháng 8 2018

9=3(a+b+c) sau đó dùng kỹ thuật tách ghép đối xứng

\(a\sqrt{a+8}+b\sqrt{b+8}+c\sqrt{c+8}\ge9.\)

\("\sqrt{a+8}"\sqrt{b+8}"\sqrt{c+8}"=xyz\Leftrightarrow\left(a,b,c\right)=\left(X^2-8\right)\left(b^2-8\right)\left(c^2-8\right)\) (1)

\(\Leftrightarrow x^2+y^2+z^2=27\) (2)

\(\left(x^2-8\right)x+y\left(y^2-8\right)+z\left(z^2-8\right)\ge9\)

\(x^3+y^3+z^3-8\left(x+y+z\right)\ge9\)

\(\left(x^3+9x\right)+\left(y^3+9y\right)+\left(z^3+9y\right)-17\left(x+y+z\right)\ge6x^2+6y^2+6z^2-17\sqrt{3\left(x^2+y^2+z^2\right)}\)

từ (2) ta có (x^2+y^2+z^2)=27 

\(VT\ge6\left(27\right)-17\sqrt{3\left(27\right)}=162-153=9\)

                                                                                                                         \(\ge\)

21 tháng 11 2018

\(ab+bc+ca+abc=4\) nên tồn tại các số x,y,z>0 thỏa mãn \(a=\dfrac{2x}{y+z},b=\dfrac{2y}{x+z},c=\dfrac{2z}{x+y}\).

Viết lại BĐT cần chứng minh:\(\sum\sqrt{\dfrac{4x^2}{\left(y+z\right)^2}+8}\le\sum\dfrac{2x}{y+z}+6\)

\(\Leftrightarrow\sum\dfrac{y+z}{\sqrt{x^2+2\left(y+z\right)^2}+x}\le\dfrac{3}{2}\)(*)

Thật vậy, theo BĐT Bunyakovsky:

\(\left[x^2+2\left(y+z\right)^2\right]\left(1+8\right)\ge\left(x+4y+4z\right)^2\)

\(\Rightarrow VT\le\sum\dfrac{y+z}{\dfrac{x+4y+4z}{3}+x}=\sum\dfrac{3\left(y+z\right)}{4\left(x+y+z\right)}=\dfrac{3}{2}\)

\(\RightarrowĐpcm\)

#proof 2 :[THTT-485]

\(ab+bc+ca+abc=4\Leftrightarrow\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)

Ta có: \(\dfrac{12}{a+2}+a-2=\dfrac{a^2+8}{a+2}\).Thiết lập tương tự và cộng lại:

\(6+a+b+c=\dfrac{a^2+8}{a+2}+\dfrac{b^2+8}{b+2}+\dfrac{c^2+8}{c+2}\ge\dfrac{\left(\sum\sqrt{a^2+8}\right)^2}{a+b+c+6}\)

\(>>đpcm \)

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Lời giải:

Do \(a\geq 1; b\geq 2; c\geq 3\Rightarrow a-1, b-2, c-3\geq 0\)

Áp dụng BĐT AM-GM cho các số không âm ta có:

\(\left\{\begin{matrix} (a-1)+4\geq 2\sqrt{4(a-1)}=4\sqrt{a-1}\\ (b-2)+9\geq 2\sqrt{9(b-2)}=6\sqrt{b-2}\\ (c-3)+16\geq 2\sqrt{16(c-3)}=8\sqrt{c-3}\end{matrix}\right.\)

Cộng theo vế và rút gọn thu được:

\(a+b+c+23\geq 4\sqrt{a-1}+6\sqrt{b-2}+8\sqrt{c-3}\) (đpcm)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} a-1=4\\ b-2=9\\ c-3=16\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=5\\ b=11\\ c=19\end{matrix}\right.\)

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

NV
5 tháng 3 2019

2/

a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)

b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" khi \(a=b=\frac{1}{4}\)

c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm

Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)

Cộng vế với vế ta được:

\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)

Dấu "=" khi \(x=y=z\)

d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)

\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)

e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)

\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)

5 tháng 3 2019

@Akai Haruma Cô giúp em với ạ!!!

NV
18 tháng 2 2020

\(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{a^2}{b+c}\ge\frac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\frac{b^2}{\sqrt{2\left(c^2+a^2\right)}}+\frac{c^2}{\sqrt{2\left(c^2+a^2\right)}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=\frac{y^2+z^2-x^2}{2}\\b^2=\frac{x^2+z^2-y^2}{2}\\c^2=\frac{x^2+y^2-z^2}{2}\\x+y+z=\sqrt{2019}\end{matrix}\right.\) \(\Rightarrow VT\ge\frac{1}{\sqrt{8}}\left(\frac{y^2+z^2-x^2}{x}+\frac{x^2+z^2-y^2}{y}+\frac{x^2+y^2-z^2}{z}\right)\)

\(VT\ge\frac{1}{\sqrt{8}}\left(\frac{\left(y+z\right)^2}{2x}+\frac{\left(x+z\right)^2}{2y}+\frac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\right)\)

\(VT\ge\frac{1}{\sqrt{8}}\left[\frac{\left(2x+2y+2z\right)^2}{2\left(x+y+z\right)}-\left(x+y+z\right)\right]=\frac{x+y+z}{\sqrt{8}}=\sqrt{\frac{2019}{8}}\)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c=\) nhiêu đó

Bài 1:

Ta có: a,b không âm(gt)

\(\Leftrightarrow\sqrt{a}\)\(\sqrt{b}\) được xác định

Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)