\(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)lớn hơn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

ta có \(a^2+2b^2+3=a^2+b^2+b^2+1+2.\)

áp dụng BĐT cauchy

=>\(a^2+2b^2+3>=2ab+2b+2=2\left(ab+b+1\right)\)

=>\(\frac{1}{a^2+2b^2+3}< =\frac{1}{2\left(ab+b+1\right)}\)

tương tự ta có \(\hept{\frac{1}{b^2+2c^2+3}< =\frac{1}{2\left(bc+c+1\right)}}\),\(\frac{1}{c^2+2a^2+3}< =\frac{1}{2\left(ac+a+1\right)}\)

=>VT<=\(\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{ac+a+1}+\frac{1}{bc+c+1}\right)\)

<=>VT<=\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{ac+a^2bc+abc}+\frac{abc}{bc+c+abc}\right)\)(do abc=1)

<=>VT<=\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{b}{ab+b+1}+\frac{ab}{ab+b+1}\right)\)=\(\frac{1}{2}\left(\frac{ab+b+1}{ab+b+1}\right)=\frac{1}{2}\)(đpcm)

Dấu bằng xảy ra khi a=b=c=1

8 tháng 5 2017

1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3)

Tại có: abc=1 =>a=1;b=1;c=1.

Syu ra: 1/(1+2.1+3)+1/(1+2.1+3)+1/(1+2.1+3)

=1/6+1/6+1/6=1/2

=>1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3) \(\le\)1/2

=> đpcm

13 tháng 10 2016

Ta có \(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{abc}\)

Theo đề bài ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}\)

\(\ge\frac{3\sqrt[3]{a^2b^2c^2}}{abc}=\frac{3}{\sqrt[3]{abc}}\ge9\)

5 tháng 8 2017

Theo bđt AM GM Ta có : \(\hept{\begin{cases}1+a^2\ge2a\\1+b^2\ge2b\\1+c^2\ge2c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{1+b^2}\le\frac{a}{2a}=\frac{1}{2}\left(1\right)\\\frac{b}{1+b^2}\le\frac{b}{2b}=\frac{1}{2}\left(2\right)\\\frac{c}{1+c^2}\le\frac{c}{2c}=\frac{1}{2}\left(3\right)\end{cases}}\)

Cộng vế với vế của (1) ; (2); (3) ta được :

\(\frac{a}{1+a^2}+\frac{b}{1+c^2}+\frac{c}{1+c^2}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\) (đpcm)

1 tháng 2 2017

Áp dụng bđt Cauchy Schwarz dạng Engel ta có:

\(\frac{a^2+b^2+c^2}{3}=\)(\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\)).\(\frac{1}{3}\ge\)\(\frac{\left(a+b+c\right)^2}{1+1+1}.\frac{1}{3}=\)\(\left(\frac{a+b+c}{3}\right)^2\)(đpcm)

Dấu "=" xảy ra khi a = b = c

13 tháng 9 2020

            Bài làm :

Áp dụng bất đẳng thức Cauchy Schwarz dạng Engel ta có:

\(\frac{a^2+b^2+c^2}{3}=\left(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\right).\frac{1}{3}\ge\frac{\left(a+b+c\right)^2}{1+1+1}.\frac{1}{3}=\left(\frac{a+b+c}{3}\right)^2\)

Dấu "=" xảy ra khi a = b = c

28 tháng 4 2017

\(\frac{a^2}{b+c}\)+\(\frac{b+c}{4}\)=\(\frac{\left(2a\right)^2+\left(b+c\right)^2}{4\left(b+c\right)}\)>=\(\frac{4a\left(b+c\right)}{4\left(b+c\right)}\)=a (b,c>0)

chứng minh tương tự ta có:\(\frac{b^2}{a+c}\)+\(\frac{c+a}{4}\)>=b

tương tự:\(\frac{c^2}{a+b}\)+\(\frac{a+b}{4}\)>=c

Cộng từng vế bất đẳng thức trên là được nha.Có gì ko hiểu thì hỏi mình