Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét TS
Có a^3 + b^3 + c^3 - 3abc = a^3 + 3a^2b + 3ab^2 + b^2 + c^3 - 3abc - 3a^2b - 3ab^2 = (a + b)^3 + c^3 - 3ab(a + b + c) = (a + b + c)( (a+b)^2 + (a + b)c + c^2 - 3abc) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)
Rút gọn TS/MS được kết quả = a + b + c = 2009 => điều phải chứng minh
Ta có :
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=a+b+c=2009\)(đpcm)
\(B=\frac{1}{a^2+b^2+c^2}+\frac{4}{2ab+2bc+2ac}+\frac{2007}{ac+bc+ac}\)
\(B\ge\frac{\left(1+2\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)
\(B\ge\frac{9}{\left(a+b+c\right)^2}+\frac{6021}{\left(a+b+c\right)^2}\ge\frac{9}{3^2}+\frac{6021}{3^2}=670\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
<=>\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
<=>\(ab+bc+ca=0\)
<=>\(\frac{ab+bc+ca}{abc}=0\)
<=> \(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
<=>\(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
<=>\(\left(\frac{1}{a}+\frac{1}{b}\right)^3=-\frac{1}{c}^3\)
<=>\(\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=\frac{-1}{c}^3\)
<=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Ta có: \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=\frac{3abc}{abc}=3\)
T>a có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
=>\(\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
=> \(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
=> \(ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)=abc\)
=> \(a^2b+ab^2+abc+abc+b^2c+bc^2+ca^2+abc+ac^2=abc\)
=> \(a^2b+ab^2+b^2c+bc^2+ca^2+ac^2+2abc=0\)
=> \(\left(a^2b+2abc+bc^2\right)+\left(ab^2+2abc+ac^2\right)+\left(b^2c-2abc+ca^2\right)=0\)
=> \(b\left(a+c\right)^2+a\left(b+c\right)^2+c\left(a-b\right)^2=0\)
=> \(\hept{\begin{cases}a+c=0\\b+c=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}a=-c\\b=-c\\a=b\end{cases}}}\)
=> trong 3 số a,b,c có 2 số đối nhau ( đpcm)
Thay a=-c ,b = -c vào \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-c\right)^{2019}}+\frac{1}{\left(-c\right)^{2019}}+\frac{1}{c^{2019}}\)
\(=-\frac{1}{c^{2019}}\)(1)
\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-c\right)^{2019}+\left(-c\right)^{2019}+c^{2019}}=-\frac{1}{c^{2019}}\) (2)
Từ (1),(2) => \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\) (đpcm)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a=-b\left(h\right)b=-c\left(h\right)c=-a\)
Thay vào tính nốt
Lời giải:
a)
Xét hiệu \(\frac{a^3}{b}-(a^2+ab-b^2)=(\frac{a^3}{b}-a^2)-(ab-b^2)\)
\(=\frac{a^3-a^2b}{b}-b(a-b)=\frac{a^2(a-b)}{b}-b(a-b)=(a-b)\left(\frac{a^2}{b}-b\right)\)
\(=(a-b).\frac{a^2-b^2}{b}=\frac{(a-b)^2(a+b)}{b}\geq 0, \forall a,b>0\)
Do đó \(\frac{a^3}{b}\geq a^2+ab-b^2\) (đpcm)
Dấu "=" xảy ra khi $a=b$
b)
Áp dụng BĐT Cauchy cho các số dương:
\(\frac{a^3}{b}+ab\geq 2a^2\)
\(\frac{b^3}{c}+bc\geq 2b^2\)
\(\frac{c^3}{a}+ac\geq 2c^2\)
Cộng theo vế:
\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\)
Mà cũng theo BĐT Cauchy:
\(a^2+b^2+c^2=\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\geq \frac{2ab}{2}+\frac{2bc}{2}+\frac{2ca}{2}=ab+bc+ca\)
\( \Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\geq 2(ab+bc+ac)-(ab+bc+ac)=ab+bc+ac\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Ta có a3 + b3 + c3 - 3abc
=[ (a+ b)3 + c3 ] - [3ab(a+b) + 3abc] = (a + b+ c)3 - 3(a + b).c(a + b + c) - 3ab.(a + b + c)
= (a + b+ c). [(a + b + c)2 - 3c(a + b) - 3ab]
= (a + b+ c).(a2 + b2 + c2 + 2ab + 2bc + 2ca - 3ac - 3bc - 3ab)
= (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
=> \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=a+b+c=2009\)
Vậy.......