Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)
\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)
Vì \(a+b+c=0\)
Nên a + b = -c (1)
Thay (1) vào A, ta được:
\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)
\(A=\dfrac{1}{abc}.3abc\)
\(A=3\)
b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)
Vì \(a+b+c=0\)
Nên b + c = -a
=> ( b + c )2 = (-a)2
=> b2 + c2 + 2bc = a2
=> b2 + c2 = a2 - 2bc (1)
Tương tự ta có: c2 + a2 = b2 - 2ac (2)
a2 + b2 = c - 2ab (3)
Thay (1), (2) và (3) vào B, ta được:
\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)
\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)
\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)
\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)
Mà \(a^3+b^3+c^3=3abc\) ( câu a )
\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)
\(\Rightarrow B=\dfrac{3}{2}\)
Bài 1:
a) GT: abc = 2
\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)
\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(M=\dfrac{1+b+bc}{bc+b+1}\)
\(M=1\)
b) GT: abc = 1
\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)
\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)
\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(N=\dfrac{1+b+bc}{bc+b+1}\)
\(N=1\)
\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)
\(=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)
\(=\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}.\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}.\frac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)^2}=1\)
\(\frac{bc+a^2}{a+b}+\frac{ac+b^2}{b+c}+\frac{ab+c^2}{a+c}\ge\)a+b+c
<=>\(\frac{bc+a^2}{a+b}-a+\frac{ac+b^2}{b+c}-b+\frac{ab+c^2}{a+c}-c\ge0\)
<=>\(\frac{b\left(c-a\right)}{a+b}+\frac{c\left(a-b\right)}{b+c}+\frac{a\left(b-c\right)}{a+c}\ge0\)
<=>\(\frac{b\left(b+c\right)\left(a+c\right)\left(a-c\right)}{\left(a+b\right)\left(c+c\right)\left(a+c\right)}\)+\(\frac{c\left(a+c\right)\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a\left(a+b\right)\left(b-c\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
<=>\(\frac{b^2c^2-b^2a^2+bc^3-a^2bc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a^3c-ab^2c+c^2a^2-b^2c^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a^2b^2-a^2c^2+ab^3-abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
<=>\(\frac{bc^3+a^3c+ab^3-a^2bc-ab^2c-abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
<=>\(\frac{2bc^3+2a^3c+2ab^3-2a^2bc-2ab^2c-2abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)>=0
<=>\(\frac{bc\left(c-a\right)^2+ac\left(a-b\right)^2+ab\left(b-c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(đung voi moi a,b,c >0)
Dấu ''='' xay ra khi a=b=c
Câu 1:
- Chứng minh a3+b3+c3=3abc thì a+b+c=0
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
- Chứng minh a3+b3+c3=3abc thì a=b=c
Áp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)
Lời giải:
$a+bc=a(a+b+c)+bc=(a+b)(a+c)$
Tương tự: $b+ca=(b+a)(b+c); c+ab=(c+a)(c+b)$
Do đó:
$P=\frac{b-c}{(a+b)(a+c)}+\frac{c-a}{(b+a)(b+c)}+\frac{a-b}{(c+a)(c+b)}$
$=\frac{(b-c)(b+c)+(c-a)(c+a)+(a-b)(a+b)}{(a+b)(b+c)(c+a)}$
$=\frac{b^2-c^2+c^2-a^2+a^2-b^2}{(a+b)(b+c)(c+a)}$
$=\frac{0}{(a+b)(b+c)(c+a)}=0$