\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)\ge9abc\)

Áp dụng bất đẳng thức Cô-si cho 3 số được

\(\left(ab+bc+ca\right)\left(a+b+c\right)\ge3\sqrt[3]{ab.bc.ca}.3\sqrt[3]{abc}=9abc\left(Đpcm\right)\)

Dấu "=" xảy ra <=> a = b = c

9 tháng 1 2019

Cách thông dụng nè:

Theo BĐT Cô si cho 3 số:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) (1)

\(a+b+c\ge3\sqrt[3]{abc}\) (2)

Nhân theo vế (1) và (2),ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)

Chia cả hai vế của BĐT cho a + b + c,ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}^{\left(đpcm\right)}\)

11 tháng 9 2018

Áp dụng bđt Bunhia-cốp-xki ở dạng phân thức, ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b+c+c+a}=\dfrac{9}{2}\)( vì a+b+c=1)

Dấu bằng xảy ra \(\Leftrightarrow\dfrac{1}{a+b}=\dfrac{1}{b+c}=\dfrac{1}{c+a}\Leftrightarrow a+b=b+c=c+a\Leftrightarrow a=b=c=\dfrac{1}{3}\)(vì a+b+c=1)

11 tháng 9 2018

Ta có: \(a,b,c>0\)

Áp dụng BĐT Cauchy-schwarz ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{\left(1+1+1\right)^2}{a+b+c+a+b+c}=\frac{3^2}{2\left(a+b+c\right)}=\frac{9}{2.1}=\frac{9}{2}\)

                                                                                                                      đpcm

Tham khảo nhé~

11 tháng 9 2018

kudo shinichi nêú dùng kỹ thuật ghép cặp nghịch đảo cho 3 số thì sao bn

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

18 tháng 9 2015

a)Bạn đặt A = a/ (1 + a^2). => A + a^2A = a => a^2A - a + A = 0. ta có delta = 1 - 4A^2 ( gọi ẩn số là a). => để pt có nghiệm <=> 1 - 4A^2 >= 0 => để phương trình có nghiệm => 1 - 4A^2 >= 0 => 1 >= 4A^2 => A =< 1/2. => max A = 1/2. bạn giải tương tự B = b/(1+b^2), C = c/(1 + c^2) rồi cộng vào nhau là ra ngay thôi. Đây là cách giải bằng delta. 

b)bạn có (a^2 - b^2)/c = ((a+b)(a-b))/c >= (c + c)(a-b)/c = 2(a - b). Bạn có c =< b ( theo đề bài) = > c + b =< 2b => (c + b) =<2b => (c + b)/b <= 2 => (c + b)/a <= 2. từ đó ta có (c^2 - b^2)/a = (c -b )(c + b)/a >= 2(c - b).

chứng minh tương tự:(a + c)/b > 1 => (a^2 - c^2)/b >= a - c.( sr ngại gõ lắm) => cộng 3 vế ta được đpcm

11 tháng 7 2019

1)Áp dụng bđt AM-GM:

\(2\left(ab+\frac{a}{b}+\frac{b}{a}\right)=\left(ab+\frac{a}{b}\right)+\left(ab+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\ge2\left(a+b+1\right)\)

\(\Leftrightarrow ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1."="\Leftrightarrow a=b=1\)

2) Áp dụng bđt AM-GM ta có: \(a+\frac{1}{a-1}=a-1+1+\frac{1}{a-1}\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=3\)

\("="\Leftrightarrow a=2\)

3) Áp dụng bđt AM-GM:

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)=\left(\frac{ab}{c}+\frac{bc}{a}\right)+\left(\frac{ac}{b}+\frac{ab}{c}\right)+\left(\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

Cộng theo vế và rg => ddpcm. Dấu bằng khi a=b=c

NV
19 tháng 6 2019

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
23 tháng 6 2019

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)

20 tháng 10 2016

sửa đề\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}-\frac{2}{1+xy}\ge0\)

\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)( luôn đúng với \(x,y\ge1\))

Đpcm

2 tháng 9 2018

Đề phải là \(a;b;c>0\) lần sau chú ý mà gõ -_-

Ta có : \(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}\ge2\sqrt{\frac{a^3}{b+c}.\frac{a\left(b+c\right)}{4}}=a^2\)(BĐT Cosi)

Tương tự \(\hept{\begin{cases}\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\\\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\end{cases}}\)

Cộng vế với vế của các BĐT vừa chứng minh lại ta được : 

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{ab+ac+bc}{2}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+ac+bc}{2}\)

\(\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\) (Do \(a^2+b^2+c^2\ge ab+ac+bc\))

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

2 tháng 9 2018

Giả sử: \(a\ge b\ge c\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}\ge\frac{b}{a+c}\ge\frac{c}{a+b}\end{cases}}\)

Áp dụng BĐT Chebyshev ta có:

\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{a+b}\)\(\ge\frac{a^2+b^2+c^2}{3}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+c}\right)\)\(=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)

Vậy \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\) Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)