\(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

1 tháng 4 2017

Bài 1: \(a+b\ge1\). cm \(a^4+b^4\ge\dfrac{1}{8}\)

ta có : \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)(BĐT bunyakovsky)

Áp dụng BĐt bunyakovsky 1 lần nữa:

\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{2}.\dfrac{1}{4}=\dfrac{1}{8}\)

dấu = xảy ra khi \(a=b=\dfrac{1}{2}\)

Bài 2:

Áp dụng BĐT bunyakovsky dạng đa thức và phân thức:

\(\left(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\right)\left(a+b+c\right)\ge\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2\ge\left[\dfrac{\left(a+b+c\right)^2}{a+b+c}\right]^2=\left(a+b+c\right)^2\)

do đó \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\)

dấu = xảy ra khi a=b=c

1 tháng 4 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\dfrac{1}{2}\)

Lại theo Cauchy-Schwarz lần nữa:

\(\left[\left(1^2\right)^2+\left(1^2\right)^2\right]\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^2+b^2\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge\dfrac{1}{4}\Leftrightarrow a^4+b^4\ge\dfrac{1}{8}\)

Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)

Bài 2:

Trước tiên ta chứng minh \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)

Ta chứng minh bổ đề: \(\dfrac{a^3}{b^2}\ge\dfrac{a^2}{b}+a-b\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Viết các BĐT tương tự và cộng lại

\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+a-b+\dfrac{b^2}{c}+b-c+\dfrac{c^2}{a}+c-a=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\left(1\right)\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\left(2\right)\)

Từ \((1);(2)\) ta thu được ĐPCM

31 tháng 12 2018

\(\text{Ta có: }\)\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

\(\Rightarrow ab+bc+ca=0\Rightarrow-ab=bc+ca\)

\(VT=\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{b^3c^3+a^3b^3+a^3c^3}{\left(abc\right)^3}\)

\(=\dfrac{\left(bc+ca\right)^3-3abc^2\left(bc+ca\right)+\left(ab\right)^3}{\left(abc\right)^3}\)

\(=\dfrac{\left(-ab\right)^3+3\left(abc\right)^2+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{\left[-\left(ab\right)^3+\left(ab\right)^3+3\left(abc\right)^2\right]}{\left(abc\right)^3}\)

\(=\dfrac{3\left(abc\right)^2}{\left(abc\right)^3}=\dfrac{3}{abc}=VP\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Bạn tham khảo tại đây:

Câu hỏi của Hoàng Tuấn - Toán lớp 8 | Học trực tuyến

10 tháng 2 2018

\(a^3+b^3+c^3=3abc\\ \Rightarrow a^3+b^3+c^3-3abc=0\\ \Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\\ \Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\left(a+b+c\ne0\right)\\ \Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\\ \Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\\ \Rightarrow a=b=c\\ \Rightarrow B=\dfrac{2}{a}.\dfrac{2}{b}.\dfrac{2}{c}=\dfrac{8}{abc}\)

4 tháng 8 2017

Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:

\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)

Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)

4 tháng 8 2017

ai tick cho mik , mik tick lại cho !^__<hahanhớ giải câu hỏi nhé ! thanks

21 tháng 12 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

=>\(\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

=> (bc+ac+ab)(a+b+c)=abc

=> abc+b2c+bc2+a2c+abc+ac2+a2b+ab2+abc=abc

=>abc+b2c+bc2+a2c+abc+ac2+a2c+ab2+abc-abc=0

=>(a2c+2abc+b2c)+(a2b+ab2)+(ac2+bc2)=0

=>c(a+b)2+ab(a+b)+c2(a+b)=0

=>(a+b)[c(a+b)+ab+c2]=0

=>(a+b)(ac+bc+ab+c2)=0

=>(a+b)[a(c+b)+c(b+c)]=0

=>(a+b)(c+b)(a+c)=0

=> a+b=0, c+b=0, a+c=0

nếu a+b=0=>a=-b

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{1}{-b^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{1}{c^3}\)(1)

\(\dfrac{1}{a^3+b^3+c^3}=\dfrac{1}{-b^3+b^3+c^3}=\dfrac{1}{c^3}\) (2)

từ (1) và (2) suy ra đpcm

25 tháng 3 2017

2a)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

\(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

2b)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

24 tháng 3 2017

Bài 1)

Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Giải

Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0

Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)\(\dfrac{1}{x+2y}\)

\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)

Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(a^3+a\geq 2a^2; b^3+b\geq 2b^2; c^3+c\geq 2c^2\)

\(\Rightarrow A=\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\leq \frac{a}{2a^2+1}+\frac{b}{2b^2+1}+\frac{c}{2c^2+1}\)

\(\leq \frac{a}{a^2+2a}+\frac{b}{b^2+2b}+\frac{c}{c^2+2c}\)

hay \(A\leq \frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}(1)\)

Vì $abc=1$ nên đặt \((a,b,c)=(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})(x,y,z>0)\)

Khi đó:
\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x})\)

\(=\frac{3}{2}-\frac{1}{2}(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2zy}+\frac{z^2}{z^2+2xz})\)

\(\leq \frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{x^2+2xy+y^2+2zy+z^2+2xz}=\frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{(x+y+z)^2}=1(2)\) (theo BĐT Cauchy-Schwarz)

Từ \((1);(2)\Rightarrow A\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

1 tháng 11 2018

bai n ay la bai o dau ma dau cung thay nhi

\(\left(a^{\dfrac{1}{3}};b^{\dfrac{1}{3}};c^{\dfrac{1}{3}}\right)->\left(x;y;z>0\right)\left(xyz=1\right)\)\(\RightarrowΣ\dfrac{x^3}{x^9+x^3+1}\le1\)

\(\dfrac{x^3}{x^9+x^3+1}\le\dfrac{x^2+1}{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow-\dfrac{\left(x-1\right)^2\left(x^9+2x^8+4x^7+6x^6+6x^5+6x^4+5x^3+4x^2+2x+1\right)}{2\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^9+x^3+\right)}\le0\)

\(\Rightarrow VT\le\dfrac{1}{2}\cdot2=1=VP\)

a=b=c=x=y=z=1