\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=2\). Tìm GTLN...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 3 2021

\(\dfrac{1}{1+a}=1-\dfrac{1}{1+b}+1-\dfrac{1}{1+c}=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Tương tự:

\(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ac}{\left(1+a\right)\left(1+c\right)}}\) ; \(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+c\right)}}\)

Nhân vế với vế:

\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

\(N_{max}=\dfrac{1}{8}\) khi \(a=b=c=\dfrac{1}{2}\)

4 tháng 8 2018

Bài 1

\(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}=a-\dfrac{a^2}{a+1}+b-\dfrac{b^2}{b+1}+c-\dfrac{c^2}{c+1}\)

\(=1-\left(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\right)\)

Áp dụng bđt Cauchy dạng phân thức \(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{1}{1+3}=\dfrac{1}{4}\)

\(\Rightarrow1-\left(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\right)\le1-\dfrac{1}{4}=\dfrac{3}{4}\)

\(\Rightarrow GTLN=\dfrac{3}{4}\) Dấu ''='' xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Bài 2

\(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}=\dfrac{a}{b^2+1}+\dfrac{1}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{1}{c^2+1}+\dfrac{c}{a^2+1}+\dfrac{1}{a^2+1}\)

Xét \(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{a^2c}{a^2+1}\)

Xét \(\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}+\dfrac{1}{a^2+1}=1-\dfrac{b^2}{b^2+1}+1-\dfrac{c^2}{c^2+1}+1-\dfrac{a^2}{a^2+1}\)

\(\Rightarrow P=6-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}+\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\right)\)

Áp dụng bđt Cauchy cho 2 số thực dương ta có \(b^2+1\ge2b\Rightarrow\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)

\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ac}{2}\)

Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\ge ab+bc+ac\) \(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ac}{2}\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{3}{2}\)

Áp dụng bđt Cauchy cho 2 số thực dương ta có \(a^2+1\ge2a\Rightarrow\dfrac{a^2}{a^2+1}\le\dfrac{a^2}{2a}=\dfrac{a}{2}\)

\(\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\)

\(\Rightarrow P\ge6-\left(\dfrac{3}{2}+\dfrac{3}{2}\right)=3\left(đpcm\right)\)

Dấu ''='' xảy ra khi \(a=b=c=1\)

Bài 1 : Ta có : \(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}=\dfrac{a^2}{a^2+a}+\dfrac{b^2}{b^2+b}+\dfrac{c^2}{c^2+c}\)

Theo BĐT CÔ - SI dưới dạng engel ta có :

\(\dfrac{a^2}{a^2+a}+\dfrac{b^2}{b^2+b}+\dfrac{c^2}{c^2+c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+\left(a+b+c\right)}=\dfrac{1}{a^2+b^2+c^2+1}\le\dfrac{1}{\dfrac{1}{a+b+c}+1}=\dfrac{1}{\dfrac{1}{3}+1}=\dfrac{4}{3}\)

Híc híc rối nùi luôn rồi , chắc sai ...

5 tháng 5 2019

bạn làm được bài nảy chưa ? chỉ mình với

AH
Akai Haruma
Giáo viên
2 tháng 8 2017

Lời giải:

Tìm max:

Áp dụng BĐT Bunhiacopxky:

\(A^2=(2x+\sqrt{5-x^2})^2\leq (x^2+5-x^2)(2^2+1)=25\)

\(\Rightarrow A\leq 5\)

Vậy \(A_{\max}=5\Leftrightarrow x=2\)

Tìm min:

ĐKXĐ: \(5-x^2\geq 0\Leftrightarrow -\sqrt{5}\leq x\leq \sqrt{5}\)

Do đó : \(A=2x+\sqrt{5-x^2}\geq 2x\geq -2\sqrt{5}\)

Vậy \(A_{\min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)

AH
Akai Haruma
Giáo viên
2 tháng 8 2017

Bài 2 bạn xem xem có viết nhầm đề bài không nhé.

\(A=\frac{3a}{2a-b}+\frac{3c}{2c-b}-2\)

Chỉ cần cho $b$ càng nhỏ thì giá trị của $A$ càng nhỏ rồi, mà lại không có điều kiện gì của $b$ ?

22 tháng 10 2017

Ta đi chứng minh BĐT : \(a^2+b^2+c^2\ge2\left(bc+ac-ab\right)\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) luôn đúng.

\(\Rightarrow2\left(bc+ac-ab\right)\le\dfrac{5}{3}\)

\(\Leftrightarrow bc+ac-ab\le\dfrac{5}{6}< 1\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)

2 tháng 8 2018

\(\left\{{}\begin{matrix}\dfrac{1}{a+2}=\dfrac{1}{2}-\dfrac{1}{b+2}+\dfrac{1}{2}-\dfrac{1}{c+2}=\dfrac{b}{2\left(b+2\right)}+\dfrac{c}{2\left(c+2\right)}\ge\sqrt{\dfrac{bc}{\left(b+2\right)\left(c+2\right)}}\\\dfrac{1}{b+2}\ge\sqrt{\dfrac{ca}{\left(c+2\right)\left(a+2\right)}}\\\dfrac{1}{c+2}\ge\sqrt{\dfrac{ab}{\left(a+2\right)\left(b+2\right)}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(\Leftrightarrow abc\le1< \dfrac{9}{8}\)

Đề sai !

Giả sử \(a=b=c=1\) thay vào phương trình đầu thì :

\(\dfrac{1}{1+2}+\dfrac{1}{1+2}+\dfrac{1}{1+2}=1\) ( Thỏa mãn )

Nhưng \(1.1.1< \dfrac{1}{8}\) ( vô lí )

Ta có \(\dfrac{1}{\text{1+a}}\)+\(\dfrac{1}{1+b}\)+\(\dfrac{1}{1+c}\)≥2

\(\dfrac{1}{\text{1+a}}\)≥{1-\(\dfrac{1}{1+b}\)}+{1-\(\dfrac{1}{1+c}\)}
\(\dfrac{1}{\text{1+a}}\)\(\dfrac{b}{1+b}\)+\(\dfrac{c}{1+c}\)
≥2.√(bc)/{(1+b)(1+c)}(theo cosi)
Hai bất đẳng thức tương tự rồi nhân vế với vế
1/{(1+a)(1+b)(1+c)≥8.abc/{(1+a)(1+b)(1...
↔abc≤1/8

Tick nha

28 tháng 10 2017

Đặt \(\left\{{}\begin{matrix}x=a+b+c\\y=ab+bc+ca\end{matrix}\right.\) khi đó \(BDT\Leftrightarrow\dfrac{x^2+4x+y+3}{x^2+2x+y+xy}\le\dfrac{12+4x+y}{9+4x+2y}\)

\(\Leftrightarrow\dfrac{x^2+4x+y+3}{x^2+2x+y+xy}-1\le\dfrac{12+4x+y}{9+4x+2y}-1\)

\(\Leftrightarrow\dfrac{2x+3-xy}{x^2+2x+y+xy}\le\dfrac{3-y}{9+4x+2y}\)

\(\Leftrightarrow\dfrac{5x^2-3x^2y-xy^2-6xy+24x+y^2+3y+27}{\left(4x+2y+9\right)\left(x^2+xy+2x+y\right)}\le0\)

Đúng vì \(\dfrac{5}{3}x^2y\ge5x^2;\dfrac{x^2y}{3}\ge y^2;xy^2\ge9x;5xy\ge15x;xy\ge3y;x^2y\ge27\)