Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(3a-2b+c\right)^2=9a^2+4b^2+c^2+2\left(3ac-6ab-2bc\right)\)
\(\Rightarrow b^2=9a^2+4b^2+c^2\)
(vì \(3a-3b+c=0\Leftrightarrow3a-2b+c=-b\), \(6ab+2bc-3ac=0\))
\(\Leftrightarrow9a^2+3b^2+c^2=0\)
\(\Leftrightarrow a=b=c=0\).
Khi đó: \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)
Ta có:
(3a−2b+c)2=9a2+4b2+c2+2(3ac−6ab−2bc)
⇒b2=9a2+4b2+c2
(vì 3a−3b+c=0⇔3a−2b+c=−b, 6ab+2bc−3ac=0)
⇔9a2+3b2+c2=0
⇔a=b=c=0.
Khi đó: P=(−1)2019+(−1)2020+(−1)2021=−1
Cauchy Schwars
\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)
\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
Vay \(M_{min}=9\)
\(VT\ge\frac{9}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
`(2bc-2016)/(3c-2bc+2016)`
`=(-(3c-2bc+2016)+3c)/(3c-2bc+2016)`
`=-1+(3c)/(3c-2bc+2016)`
`(2b)/(3-2b+ab)
`=(2bc)/(3c-2bc+abc)`
`=(2bc)/(3c-2bc+2016)`
`(4032-3ac)/(3ac-4032+2016a)`
`=(-(3ac-4032+2016a)+2016a)/(3ac-4032+2016a)`
`=-1+(2016a)/(3ac-2abc+2016a)`
`=-1+(2016)/(3c-2bc+2016)`
`=>M=-1+(3c)/(3c-2bc+2016)-(2bc)/(3c-2bc+2016)-1+(2016)/(3c-2bc+2016)
`=>M=-2+(3c-2bc+2016)/(3c-2bc+2016)`
`=>M=-2+1`
`=>M=-1`
`(2bc-2016)/(3c-2bc+2016)`
`=(-(3c-2bc+2016)+3c)/(3c-2bc+2016)`
`=-1+(3c)/(3c-2bc+2016)`
`(2b)/(3-2b+ab)`
`=(2bc)/(3c-2bc+abc)`
`=(2bc)/(3c-2bc+2016)`
`(4032-3ac)/(3ac-4032+2016a)`
`=(-(3ac-4032+2016a)+2016a)/(3ac-4032+2016a)`
`=-1+(2016a)/(3ac-2abc+2016a)`
`=-1+(2016)/(3c-2bc+2016)`
`=>M=-1+(3c)/(3c-2bc+2016)-(2bc)/(3c-2bc+2016)-1+(2016)/(3c-2bc+2016)`
`=>M=-2+(3c-2bc+2016)/(3c-2bc+2016)`
`=>M=-2+1`
`=>M=-1`
Nãy thiếu latex ạ sorry~~
tớ không hiểu đầu bài
Đề bài chỉ cho a+b+c=0 và yêu cầu cm ab + 2bc + 3ac < hoặc = 0