\(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ab}\ge\dfrac{1}{a}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

Áp dụng bất đẳng thức AM - GM ta ccó :

\(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=2\sqrt{\frac{1}{c^2}}=\frac{2}{c}\)(1)

\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\)(2)

\(\frac{a}{bc}+\frac{c}{ab}\ge2\sqrt{\frac{a}{bc}.\frac{c}{ab}}=2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)(3)

Cộng vế với vế của (1);(2);(3) lại ta được :

\(\frac{2a}{bc}+\frac{2b}{ac}+\frac{2c}{ab}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\Leftrightarrow2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(đpcm)

24 tháng 11 2017

ctv làm hay quá

17 tháng 3 2018

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)

29 tháng 4 2018

Bài 1:

\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\) với a,b,c > 0

Áp dụng BĐT Chauchy cho 2 số không âm, ta có:

\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge c\sqrt{\dfrac{b}{a}.\dfrac{a}{b}}=2c\)

\(\dfrac{ac}{b}+\dfrac{ab}{c}=a\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\ge a\sqrt{\dfrac{c}{b}.\dfrac{b}{c}}=2a\)

\(\dfrac{ab}{c}+\dfrac{bc}{a}=b\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge b\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2b\)

Cộng vế theo vế ta được:

\(2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)

26 tháng 3 2018

áp dụng BĐT cô si cho 2 số ta có

\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ac}{b}}\)

\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{c^2}=2c\)

TT ta có \(\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\)

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)

cộng từng vế 3 BĐT trên

\(2\left(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\) (đpcm)

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

1 tháng 3 2019

Ta có:

\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge2c\)

Chứng minh tương tự, ta có:

\(\dfrac{bc}{a}+\dfrac{ab}{c}\ge2b\)

\(\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\)

\(\Rightarrow2\left(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\)

Dấu = xảy ra khi a = b = c

Áp dụng bđt AM-GM: \(\dfrac{a}{b^2}+\dfrac{1}{a}\ge2\sqrt{\dfrac{a}{b^2a}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\) \(\dfrac{b}{c^2}+\dfrac{1}{b}\ge2\sqrt{\dfrac{b}{c^2b}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\) \(\dfrac{c}{a^2}+\dfrac{1}{c}\ge2\sqrt{\dfrac{c}{a^2c}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\) Cộng theo vế: \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\Leftrightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)Dấu "=" xảy ra khi: \(a=b=c\)

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)