Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng bất đẳng thức Schur với \(r=1\)
\(\Rightarrow a^3+b^3+c^3+3abc\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
\(\Rightarrow3abc\ge a^2b+ca^2-a^3+ab^2+b^2c-b^3+c^2a+bc^2-c^3\)
\(\Rightarrow3abc\ge a^2\left(b+c-a\right)+b^2\left(a+c-b\right)+c^2\left(a+b-c\right)\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
b) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\dfrac{a^3}{b^2}+b+b\ge3\sqrt[3]{\dfrac{a^3}{b^2}.b^2}=3a\)
Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{b^3}{c^2}+c+c\ge3b\\\dfrac{c^3}{a^2}+a+a\ge3c\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}+2\left(a+b+c\right)\ge3\left(a+b+c\right)\)
\(\Rightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
c) Ta có \(abc=ab+bc+ca\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\dfrac{1}{a+2b+3c}=\dfrac{1}{a+c+2\left(b+c\right)}\le\dfrac{1}{4}\left[\dfrac{1}{a+c}+\dfrac{1}{2\left(b+c\right)}\right]\)
Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{b+2c+3a}\le\dfrac{1}{4}\left[\dfrac{1}{a+b}+\dfrac{1}{2\left(a+c\right)}\right]\\\dfrac{1}{c+2a+3b}\le\dfrac{1}{4}\left[\dfrac{1}{b+c}+\dfrac{1}{2\left(a+b\right)}\right]\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{1}{4}\left[\dfrac{3}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\right]\)
\(\Rightarrow VT\le\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\) ( 1 )
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{8}\left[\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\right]\)
\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{8}\left[\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\right]\)
\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{16}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow VT\le\dfrac{3}{16}\)
\(\Rightarrow\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}\le\dfrac{3}{16}\) ( đpcm )
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
đăng từng câu 1 thôi, nhiều nhất là 3 câu/ 1 lần hỏi vì đâu có giới hạn số lần hỏi
\(A+\dfrac{1}{4}\left(a+b+c\right)+\dfrac{3}{4}=\left(\dfrac{a^2}{b+1}+\dfrac{1}{4}\left(b+1\right)\right)+\left(\dfrac{b^2}{c+1}+\dfrac{1}{4}\left(c+1\right)\right)+\left(\dfrac{c^2}{a+1}+\left(a+1\right)\right)\)\(A+\dfrac{3}{2}\ge a+b+c=3\Rightarrow A\ge\dfrac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1
a) Please xem lại đề
b) \(a+b\ge2\sqrt{a}+2\sqrt{b}-2\)
\(\Leftrightarrow\left(a-2\sqrt{a}+1\right)+\left(b-2\sqrt{b}+1\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b}-1\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra \(\Leftrightarrow a=b=1\)
c) Áp dụng BĐT Cauchy cho 3 số
\(a+\dfrac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\dfrac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\left(a-b\right).b.\dfrac{1}{b\left(a-b\right)}}=3\)
Đẳng thức xảy ra \(\Leftrightarrow a-b=b=\dfrac{1}{b\left(a-b\right)}\Leftrightarrow a=2;b=1\)
d) Áp dụng BĐT Cauchy cho 4 số
\(\dfrac{3x^4+16}{x^3}=3x+\dfrac{16}{x^3}=x+x+x+\dfrac{16}{x^3}\ge4\sqrt[4]{x.x.x.\dfrac{16}{x^3}}=8\)
Đẳng thức xảy ra \(\Leftrightarrow x=\dfrac{16}{x^3}\Leftrightarrow x=2\)
Bài 2:
Bài 1:
\(a^2+b^2+c^2=14\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=14\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=14\Rightarrow ab+bc+ac=-7\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có:
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=14^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=196-2.49=98\)
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a+b+c\right)^2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{9\left(a^2+b^2+c^2\right)}{ab+bc+ca}+2\left(ab+bc+ca\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Leftrightarrow P\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+18\)
\(\ge2+8+18=28\)
Ta có : \(\Sigma\dfrac{ab}{a^2+b^2}=3-\Sigma\dfrac{a^2+b^2-ab}{a^2+b^2}\)
Thấy : \(0< ab\left(a^2+b^2-ab\right)\le\dfrac{\left(a^2+b^2\right)^2}{4}\)
\(\Rightarrow\dfrac{a^2+b^2-ab}{a^2+b^2}\le\dfrac{1}{4}\left(\dfrac{a^2+b^2}{ab}\right)=\dfrac{1}{4}\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
CMTT ; ta có : \(\dfrac{b^2+c^2-bc}{b^2+c^2}\le\dfrac{1}{4}\left(\dfrac{b}{c}+\dfrac{c}{b}\right);\dfrac{c^2+a^2-ac}{a^2+c^2}\le\dfrac{1}{4}\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
Suy ra : \(\Sigma\dfrac{ab}{a^2+b^2}\ge3-\dfrac{1}{4}\left(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{c}{a}\right)=\dfrac{1}{4}\left(\dfrac{a+c}{b}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\right)\)
Thấy : \(\dfrac{a+c}{b}+\dfrac{b+c}{a}+\dfrac{a+b}{c}=\dfrac{\left(a+c\right)ac+\left(b+c\right)bc+ab\left(a+b\right)}{abc}=ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)( do abc = 1 )
Áp dụng BĐT Schur ta được : \(ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\le a^3+b^3+c^3+3abc=\Sigma a^3+3\)
Suy ra : \(\Sigma\dfrac{ab}{a^2+b^2}\ge3-\dfrac{1}{4}\left(\Sigma a^3+3\right)=\dfrac{9}{4}-\dfrac{1}{4}\Sigma a^3\cdot\)
Khi đó : \(\Sigma a^3+\Sigma\dfrac{ab}{a^2+b^2}\ge\dfrac{3}{4}\Sigma a^3+\dfrac{9}{4}\ge\dfrac{3}{4}.3+\dfrac{9}{4}=\dfrac{9}{2}\)
" = " <=> a = b = c = 1
Vậy ...
Khuya rồi còn đăng à bạn ?