K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

Ta có:  a3(b - c) + b3(c - a) + c3(a - b)

= a3(b - c) - b3(b - c) - b3(a - b) + c3(a - b)

= (b - c)(a3 - b3) - (b3 - c3)(a - b)

= (b - c)(a - b)(a2 + ab + b2) - (a - b)(b - c)(b+ bc + c2)

= (a - b)(b - c)(a2 + ab + b2 - b2 - bc - c2)

= (a - b)(b - c)(a2 + ab - bc - c2)

= (a - b)(b - c)[(a + c)(a - c) + b(a - c)]

= (a - b)(b - c)(a - c)(a + b + c) = 0   ( vì a + b + c = 0 )

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

...

2 tháng 12 2018

Cảm ơn bạn nha

19 tháng 12 2018

phân tích a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0

=>a=b=c(vì a+b+c khác 0)

thay a=b=c vào P

17 tháng 12 2016

1/ \(a+b+c=11\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)

\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)

2/ \(a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)

3/ \(x^4+3x^3y+3xy^3+y^4\)

\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)

\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)

18 tháng 12 2016

bạn alibaba nguyễn có thể làm lại giúp mình được không ?

23 tháng 7 2018

2) b)

Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\) 

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)

\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)

\(ab+bc+ac=-60:2=-30\)

23 tháng 7 2018

a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)

                           = (x+y)^3

                           = 1^3 =1

b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac

    9^2 = 141 +2(ab+bc+ac)

    -60 = 2(ab+bc+ac)

    ab+ac+bc=-30

Vậy M=-30

c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)

       = x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3

       = x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3

       = 0

Vậy N=0 .Chúc bạn học tốt.