\(\ge\)1. Chứng minh:

\(\dfrac{1}{1+a^2}+\dfrac{1}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 3 2022

Lời giải:
BĐT \(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

$\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2b^2+a^2+b^2+1)$

$\Leftrightarrow a^3b+a^2+ab^3+b^2+2ab+2\geq 2a^2b^2+2a^2+2b^2+2$

$\Leftrightarrow a^3b+ab^3+2ab\geq 2a^2b^2+a^2+b^2$

$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0$

$\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0$

$\Leftrightarrow (a-b)^2(ab-1)\geq 0$

Điều này luôn đúng với mọi $ab\geq 1$ 

Do đó ta có đpcm 

Dấu "=" xảy ra khi $a=b$ hoặc $ab=1$

8 tháng 8 2017

1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^2-xy+y^2\) (do x+y=1)

\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)

Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)

Vậy \(x^3+y^3\ge\dfrac{1}{4}\)

8 tháng 8 2017

2.

a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))

Đẳng thức xảy ra \(\Leftrightarrow a=b\)

b) Lần trước mk giải rồi nhá

3.

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)

\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

a)

Sử dụng pp biến đổi tương đương:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)

\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)

Ta có đpcm.

b) Áp dụng công thức của phần a ta có:

\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)

Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)

Do đó:

\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)

Cộng theo vế các BĐT trên thu được:

\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)

\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

4 tháng 10 2017

thangbnsh@gmail.com helpme

4 tháng 10 2017

thangbnsh@gmail.comacelegona

AH
Akai Haruma
Giáo viên
9 tháng 6 2021

Bạn xem lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abcge0a2b2c21cmr-dfracc1abdfracb1acdfraca1bcge1.1019784090594

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

23 tháng 6 2018

Căn bậc hai. Căn bậc ba

11 tháng 8 2018

Hỏi đáp Toán

12 tháng 2 2018

theo de bai ta co \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\) suy ra ab+bc+ac=abc

\(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ac}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

nên vt =\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(c+b\right)}\)

nx \(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\) >= \(\dfrac{3a}{4}\)

ttu vt>= \(\dfrac{3\left(a+b+c\right)}{4}-\left(\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{a+b}{8}+\dfrac{b+c}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\right)\) =\(\dfrac{a+b+c}{4}\)

dau = say ra a=b=c=3

26 tháng 11 2018

@Akai Haruma

AH
Akai Haruma
Giáo viên
27 tháng 11 2018

Lời giải:

Vì $a+b+c=1$ nên:
\(\text{VT}=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\right)\)

\(=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)+\frac{3}{4}\)

\(=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\right)+\frac{3}{4}\)

\(=(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab})+(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc})+(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ac})+\frac{3}{4}\)

\(\geq 2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}=\frac{15}{4}\) (áp dụng BĐT AM-GM)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

16 tháng 2 2019

bn vô câu hỏi tương tự có hết nhé