K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

\(0,a\left(b\right)=0,abbbbbbbbbbbb...\)

\(0,b\left(a\right)=0,baaaaaaaaa...\)

Đặt tính theo cột dọc kết hợp với điều kiện a+b=9 tính được \(0,a\left(b\right)+0,b\left(a\right)=0,999999999...=0,\left(9\right)\)

8 tháng 12 2018

\(0,a\left(b\right)=a.0,1+0,0\left(b\right)=a.0,1+\frac{b}{99}\)
\(0,b\left(a\right)=b.0,1+\frac{a}{99}\)
\(\Rightarrow0,a\left(b\right)+0,b\left(a\right)=0,1\left(a+b\right)+\frac{a+b}{99}=0,9+\frac{1}{11}\)

21 tháng 11 2015

0,a(b) + 0,b(a) = 0,9(9) =0,(9) = 1  ( vì a+b =9)

21 tháng 11 2015

làm đầy đủ giúp tớ đc ko

1 tháng 8 2019

mk viết thiếu nha, viết lại là:

Cho a+b = 9 . Tính giá trị của biểu thức sau:

M =  0,a(b)   +  0,b(a) 

1 tháng 8 2019

0,a(b)   +  0,b(a) có gạch trên đầu nha

8 tháng 12 2018

\(0,a\left(b\right)=0,abbbbbbbbbbbbbbb...\)

\(0,b\left(a\right)=0,baaaaaaaaaaaaaaaaa...\)

Đặt phép tính theo cột dọc tính đc: \(0,a\left(b\right)+0,b\left(a\right)=0,99999999999999...\)

Thường người ta làm tròn thành 1

8 tháng 12 2018

thank you bạn nhìu nhìu lắm nha

12 tháng 3 2020

0,99999...........

13 tháng 7 2017

a, Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c 

b, Áp dung TCDTSBN ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y = z

Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)

ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c

Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

13 tháng 7 2017

a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b ; a = c ; c = a => a=b=c

b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = z; z = x => x = y = z

\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c,

Theo đề bài:

ac = bb <=> bb/a = c

ab = cc <=> ab/c = c

=> bb/a = ab/c

=> bbc = aab 

=> bc = ab

Mà cc = ab => cc = bc => b = c

ac/b = b

cc/a = b

=> ac/b = cc/a

=> aac = bcc

=> aa = bc

Mà bc = cc => aa = cc => a = c

=> a = b = c

\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

15 tháng 2 2017

từ  a - b-  c = 0 .Suy ra:A=\(\frac{b}{a}.\frac{-c}{b}.\frac{a}{c}=1\)

9 tháng 2 2020

\(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)

\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)