Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(1\right)\)
b, Ta có: \(\frac{a}{a+b}< \frac{a+b}{a+b+c};\frac{b}{b+c}< \frac{b+c}{a+b+c};\frac{c}{c+a}< \frac{c+a}{a+b+c}\)
\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
Từ (1) và (2) => 1<M<2 hay M không phải là số nguyên
Bạn tham khảo nhé
\(b)\) Ta có :
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(M>1\)\(\left(1\right)\)
Lại có :
\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)
\(\Rightarrow\)\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\)\(M< 2\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(1< M< 2\)
Vậy M không phải là số nguyên
Cho M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)với a;b;c >0
a)CM: M>1
b)CM: M ko là số nguyên
cm: \(1< M< 2\) sẽ thỏa mãn cả a và b
Ta có:
\(M>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\)
vì \(a;b;c>0\Leftrightarrow\dfrac{a}{a+b};\dfrac{b}{b+c};\dfrac{c}{c+a}< 1\)
\(\Rightarrow M< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}=2\)
hay: \(1< M< 2\)
Ta có a3 + b3 = 2(c3 - 8d3)
<=> a3 + b3 = 2c3 - 16d3
<=> a3 + b3 + c3 + d3 = 3(c3 - 5d3) ⋮3⋮3(1)
Xét hiệu a3 + b3 + c3 + d3 - (a + b + c + d)
= (a3 - a) + (b3 - b) + (c3 - c) + (d3 - d)
= (a - 1)a(a + 1) + (b - 1)b(b + 1) + (d - 1)d(d + 1) ⋮3⋮3 (tổng các tích 3 số nguyên liên tiếp)
=> a3 + b3 + c3 + d3 - (a + b + c + d) ⋮⋮3 (2)
Từ (1) và (2) => a + b + c + d ⋮3⋮3
\(3\left(a+b\right)=2\left(b+c\right)=7\left(c+a\right)\)
\(\Rightarrow\dfrac{3\left(a+b\right)}{42}=\dfrac{2\left(b+c\right)}{42}=\dfrac{7\left(c+a\right)}{42}\)
\(\Rightarrow\dfrac{a+b}{14}=\dfrac{b+c}{21}=\dfrac{c+a}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b}{14}=\dfrac{b+c}{21}=\dfrac{c+a}{6}=\dfrac{b+c-a-b}{21-14}=\dfrac{c-a}{7}\left(1\right)\)
\(\dfrac{a+b}{14}=\dfrac{b+c}{21}=\dfrac{c+a}{6}=\dfrac{a+b-c-a}{14-6}=\dfrac{b-c}{8}\left(2\right)\)
Từ (1) và (2) ta có đpcm
Ta có:
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)\(\Rightarrow\)\(M>1\left(1\right)\)
M=\(\dfrac{a+b-b}{a+b}+\dfrac{b+c-c}{b+c}+\dfrac{c+a-a}{c+a}\)
= \(3-\left(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}\right)< 2\) \(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}>1\)
(Vì \(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}>1\)
\(\Rightarrow1< M< 2\)
Vậy M không có giá trị nguyên(đpcm)
a: Xét ΔAMB và ΔA'M'B' có
AM=A'M'
MB=M'B'
AB=A'B'
DO đó: ΔAMB=ΔA'M'B'
b: Xét ΔAMC và ΔA'M'C' có
AM=A'M'
MC=M'C'
AC=A'C'
Do đó: ΔAMC=ΔA'M'C'
=>góc AMC=góc A'M'C
a*a+b*b+c*c=n*n+p*p+m*m
suy ra a= m hoặc n hoặc p
b=.........................
c=............................
suy ra a+b+c+m+n+p chia hết cho 1 và chính nó và a hoặc b hoặc c hoặc..........hoặc p suy ra a+b+....+p là hợp số
\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{b}{c}\\\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=t\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=t^3\\\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}=t^3\end{matrix}\right.\)
Ta có đpcm
Ta có :
\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)
\(c^2=bd\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)
Áp dụng t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(3\right)\)
Lại có :
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(4\right)\)
Từ \(\left(3\right)+\left(4\right)\Leftrightarrowđpcm\)