Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng bất đẳng thức AM - GM ta dễ thấy:
\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)
\(\ge2\sqrt{\left(a-1+2\sqrt{a-2}\right)\left(a-1-2\sqrt{a-2}\right)}\)
\(=2\sqrt{\left(a-1\right)^2-4\left(a-2\right)}=2\sqrt{a^2-6a+9}=2\sqrt{\left(a-3\right)^2}\ge2\)( vì a khác 3 )
Hoặc cách khác như thế này:
\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)
\(=\sqrt{\left[a-2+2\sqrt{a+2}+1\right]}+\sqrt{\left[a-2-2\sqrt{a-2}+1\right]}\)
\(=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)
\(=\left|\sqrt{a-2}+1\right|+\left|\sqrt{a-2}-1\right|\)
\(=\left|\sqrt{a-2}+1\right|+\left|1-\sqrt{a-2}\right|\ge\left|\sqrt{a-2}+1+1-\sqrt{a-2}\right|=2\)
Đẳng thức tự tìm nha
\(\sqrt{a^2+3a+5}\ge\frac{5a+13}{6}\Leftrightarrow a^2+3a+5\ge\frac{25a^2+130a+169}{36}\)
\(\Leftrightarrow36a^2+108a+180\ge25a^2+130a+169\Leftrightarrow11a^2-22a+11\ge0\)
\(\Leftrightarrow11\left(a-1\right)^2\ge0\forall a\inℝ\)
Dấu = xảy ra khi a=1
Ta có:
\(\sqrt{a^2+3ab+5b^2}=\sqrt{\left(\frac{25a^2}{36}+\frac{130ab}{36}+\frac{169}{36}\right)+\frac{11}{36}\left(a^2-2ab+b^2\right)}\)
\(=\sqrt{\left(\frac{5a}{6}+\frac{13b}{6}\right)^2+\frac{11}{36}\left(a-b\right)^2}\ge\frac{5a+13b}{6}\)
Tương tự:\(\sqrt{b^2+3bc+5c^2}\ge\frac{5b+13c}{6};\sqrt{c^2+3ca+5a^2}\ge\frac{5c+13a}{6}\)
Khi đó:\(P=\sqrt{a^2+3ab+5b^2}+\sqrt{b^2+3bc+5c^2}+\sqrt{c^2+3ac+5a^2}\)
\(\ge\frac{5a+13b+5b+13c+5c+13a}{6}=\frac{18\left(a+b+c\right)}{6}=3\left(a+b+c\right)=9\)
Dấu "=" xảy ra tại \(a=b=c=1\)
tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'<
Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)
\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)
Tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé
Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)
Tương tự cộng lại ra đpcm
\(x_o^3=a+\sqrt[3]{a+\sqrt{a^2+b^3}}-\sqrt[3]{a^2+b^3}+a-3\sqrt[3]{\left(a+\sqrt{a^2+b^3}\right)\left(\sqrt{a^2+b^3}-a\right)}.x_o\)
\(\Leftrightarrow x_o^3=2a-3x_o\sqrt[3]{a^2-a^2-b^3}\)
\(\Leftrightarrow x_o^3+2bx_o-2a=0\)
nên x0 là 1 nghiệm của pt đó
Thay giá trị x = y = z vô thì thấy VT > 2 nên nghi ngờ đề sai. B xem lại
cậu nhờ mấy bn giỏi giỏi ý ko mik bảo tra trên google mấy bn lại bảo mik câu ****
Có \(a+1+1\ge3\sqrt[3]{a}\)
\(b+1+1\ge3\sqrt[3]{b}\)
\(\Rightarrow a+b+1+1+1+1\ge3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)
\(\Rightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\le6\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}\le2\)
"=" tại a=b=1