Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2+b^2=a^2+2ab+b^2-2ab\)
\(=\left(a+b\right)^2-2ab=5^2-2.6=25-12=13\)
a) Vì \(a+b=5\Rightarrow\left(a+b\right)^2=25\)
\(\Rightarrow a^2+2ab+b^2=25\)
Mà ab= 6
\(\Rightarrow a^2+18+b^2=25\)
\(\Rightarrow a^2+b^2=7\)
a,VT= (a+b).(a2-a.b+b2) +(a-b).(a2+a.b+b2)
=a3+b3+a3-b3
=2a3
=VP
=> điều phải chứng minh
b,VP= (a+b).((a-b)2+a.b)
=(a+b)(a2-2a.b+b2+a.b)
=(a+b)(a2-a.b+b2)
=a3+b3
=>điều phải chứng minh
a/ ta có vế trái = a3 + b3 + a3 - b3
= 2a3 = vế phải
b/ ta có vế phải = (a+b).(a2 - 2.a.b + b2 + a.b)
= (a+b).(a2 - ab + b2)
= a3 + b3 = vế trái
c/ ta có vế phải = (a2c2 + 2acbd + b2d2) + (a2d2 - 2adbc + b2c2)
= a2c2 + 2abcd +b2d2 + a2d2 - 2abcd + b2c2
= a2c2 + b2d2 + a2d2 + b2c2
= a2.(c2 + d2) + b2.(c2+ d2)
= (a2 + b2) . (c2 + d2) = vế trái
Lâu lâu lạc chôi qa đây xíu =))
\(\hept{\begin{cases}a+b=2\\a\cdot b=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b\cdot\left(2-b\right)=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\2b-b^2=-1\end{cases}}\)
Solve a và b, lưu nghiệm vào và thực hiện \(a^2+b^2=6\)
\(\hept{\begin{cases}a=12\\b=11\end{cases}}\)hoặc \(\hept{\begin{cases}a=11\\b=12\end{cases}}\)
Ta có \(a^2+b^2=11^2+12^2=265\)
Hoặc \(a^2+b^2=12^2+11^2=265\)
.. Kết bạn với mình nha
Ta có :
a . b = 132 => a = \(\frac{132}{b}\).Thay a = \(\frac{132}{b}\)vào biểu thức a + b = 23 ta được :
\(\frac{132}{b}+b=23\)\(\Leftrightarrow\frac{132+b^2}{b}=23\)\(\Leftrightarrow b^2-23b+132=0\)\(\Leftrightarrow\orbr{\begin{cases}b=12\\b=11\end{cases}}\)
Với b = 12 => a = 132 : 12 = 11 => \(a^2+b^2=11^2+12^2=265\)
Với b = 11 => a = 132 : 11 = 12 => \(a^2+b^2=12^2+11^2=265\)
Đáp số: \(a^2+b^2=265\)
a=8 hoặc 9
b=9 hoặc 8
9+8=17
9*8=72
92+82=9*9+8*8
=81+64
=145