Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Nếu (a + b) < 0 thì bất đẳng thức đúng
Với (a + b) \(\ge0\)thì ta có
\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)
\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
b/ Áp dụng BĐT BCS :
\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)
Áp dụng câu a/ :
\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)
\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)
Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9
Áp dụng bđt Bunhiacopxki :
\(A^2=\left(1.\sqrt{2a+b+1}+1.\sqrt{2b+c+1}+1.\sqrt{2c+a+1}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(2a+b+1+2b+c+1+2c+a+1\right)\)
\(\Rightarrow A^2\le3.3\left(a+b+c+1\right)\)
\(\Rightarrow A^2\le36\Rightarrow A\le6\) (Vì A > 0)
Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}\sqrt{2a+b+1}=\sqrt{2b+c+1}=\sqrt{2c+a+1}\\a+b+c=3\end{cases}\)
\(\Leftrightarrow a=b=c=1\)
Vậy A đạt giá trị lớn nhất bằng 6 tại a = b = c = 1
Với 2 số thực x,y>0, ta có:
\(x^3+y^3-x^2y-xy^2=\left(x+y\right)\left(x-y\right)^2\ge0\). Dấu bằng xảy ra \(\Leftrightarrow x=y\).
Do đó: \(x^3+y^3\ge x^2y+xy^2\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow x+y\le\sqrt[3]{4x^3+4y^3}\)Áp dụng bđt vừa cm, ta có: \(S=\sqrt[3]{2a+b}+\sqrt[3]{2b+c}+\sqrt[3]{2c+d}+\sqrt[3]{2d+a}\le\sqrt[3]{8a+12b+4c}+\sqrt[3]{8c+12d+4a}\le\sqrt[3]{48a+48b+48c+48d}=\sqrt[3]{48}\)(vì a+b+c+d=1)
Dấu bằng xảy ra\(\Leftrightarrow a=b=c=d=\dfrac{1}{4}\)(vì a+b+c+d=1)
Bn ơi 3x3 + 3y3 vào cả 2 vế thì 4x3 + 4y3 > 3x3 + 3y3 + x2y + xy2 k phải là (x + y)3
Từ kết quả bài toán suy ngược ra thôi
Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức
Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)
Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi
1) hệ <=> \(\left\{{}\begin{matrix}x+y+3\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)=1\\x+y+3\sqrt[3]{\left(x-1\right)\left(y+1\right)}\left(\sqrt[3]{x-1}+\sqrt[3]{y+1}\right)=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y+3\sqrt[3]{xy}=1\\x+y+3\sqrt[3]{\left(x-1\right)\left(y+1\right)}=1\end{matrix}\right.\)
trừ vế theo vế => \(3\sqrt[3]{xy}-3\sqrt[3]{\left(x-1\right)\left(y+1\right)}=0\)
<=> xy=(x-1)(y-1) <=> x-y=1=> \(\left\{{}\begin{matrix}\sqrt[3]{x}+\sqrt[3]{y}=1\\x-y=1\end{matrix}\right.\)
đặt \(\sqrt[3]{x}=a;\sqrt[3]{y}=b\)
hpt <=> \(\left\{{}\begin{matrix}a+b=1\\a^3-b^3=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}b=1-a\\2a^3-3a^2+3a-2=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}b=1-a\\\left(a-1\right)\left(2a^2-a+2\right)=0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
p/s: cách làm khá dài ,có ai có cách khác thì làm luôn cho mik exp :v )
Ez to prove \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Leftrightarrow\frac{6054}{3}\ge ab+bc+ca\Leftrightarrow ab+ca+bc\le2018\)
Khi đó: \(\frac{2a}{\sqrt{a^2+2018}}\le\frac{2a}{\sqrt{a^2+ab+bc+ca}}=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+b}+\frac{a}{a+c}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=3\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$P^2\leq (1+2a+1+2b)(1+1)=4(a+b+1)$
Tiếp tục áp dụng Bunhiacopxky:
$(a+b)^2\leq (a^2+b^2)(1+1)=2\Rightarrow a+b\leq \sqrt{2}$
$\Rightarrow P^2\leq 4(\sqrt{2}+1)$
$\Rightarrow P\leq 2\sqrt{\sqrt{2}+1}$
Vậy $P_{\max}=2\sqrt{\sqrt{2}+1}$. Giá trị này đạt tại $a=b=\frac{1}{\sqrt{2}}$