K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 7 2021

\(A=\frac{5x-3}{x+1}=\frac{5x+5-8}{x+1}=5-\frac{8}{x+1}\inℤ\Leftrightarrow\frac{8}{x+1}\inℤ\)

mà \(x\inℤ\)nên \(x+1\inƯ\left(8\right)=\left\{-8,-4,-2,-1,1,2,4,8\right\}\)

\(\Leftrightarrow x\in\left\{-9,-5,-3,-2,0,1,3,7\right\}\).

6 tháng 12 2021

tìm giá trị x để biểu thức nguyên

D=2x-3/x+5 

E=x^2-5/x-3

26 tháng 6 2023

ĐKXĐ: \(x\ne\pm3\)

a

Khi x = 1:

\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)

Khi x = 2:

\(A=\dfrac{3.2+2}{2-3}=-8\)

Khi x = \(\dfrac{5}{2}:\)

\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)

b

Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên

\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)

Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)

c

Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên

\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)

\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)

d

\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)

=> Để A, B cùng là số nguyên thì x = 4.

7 tháng 5 2016

x=2010

7 tháng 5 2016

Chia 4 khoảng trên trục số rồi giải

DD
16 tháng 1 2021

\(A=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Leftrightarrow A\left(\sqrt{x}+3\right)=\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x}\left(A-1\right)=1-3A\)

Nếu \(A-1=0\Leftrightarrow A=1\)không thỏa. 

Nếu \(A\ne1\)\(\sqrt{x}=\frac{1-3A}{A-1}\ge0\Leftrightarrow\frac{1}{3}\le A< 1\)

Suy ra không tồn tại giá trị \(x\)thỏa mãn. 

20 tháng 12 2022

a: ĐKXĐ: x<>2; x<>3

\(Q=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-3\right)\left(x-2\right)}\)

\(=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+1}{x-3}\)

b: Để P<1 thì P-1<0

=>\(\dfrac{x+1-x+3}{x-3}< 0\)

=>x-3<0

=>x<3

22 tháng 8 2018

a) \(F=\frac{3x-2}{x+3}\)là số nguyên

\(\Leftrightarrow3x-2⋮x+3\)

\(\Leftrightarrow3x+9-11⋮x+3\)

\(\Leftrightarrow3\left(x+3\right)-11⋮x+3\)

\(\Leftrightarrow11⋮x+3\)\(\Leftrightarrow x+3\in\left\{-11;-1;1;11\right\}\)

\(\Leftrightarrow x\in\left\{-14;-4;-2;8\right\}\)

b) \(\frac{x^2-2x+4}{x+1}\)là số nguyên 

\(\Leftrightarrow x^2-2x+4⋮x+1\)

\(\Leftrightarrow x^2+x-3x-3+7⋮x+1\)

\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)+7⋮x+1\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)+7⋮x+1\)

\(\Leftrightarrow7⋮x+1\)\(\Leftrightarrow x+1\in\left\{-7;-1;1;7\right\}\)

\(\Leftrightarrow x\in\left\{-8;-2;0;6\right\}\)

6 tháng 9 2019

a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)

b. \(\left(x^2+1\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)

c, \(2x^2-\frac{1}{3}x=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)

d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)

\(\Rightarrow5x=7\)

\(\Rightarrow x=\frac{7}{5}\)

e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)

Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }

x - 21-17-7
x319-5

 Vậy....

6 tháng 9 2019

a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)

Vậy : ....

b) \(\left(x^2+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)

c) \(2x^2-\frac{1}{3}x=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)

Vậy :...