Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5+5^2+5^3+...+5^{992}\)
\(5A=5^2+5^3+5^4+...+5^{993}\)
\(5A-A=\left(5^2+5^3+...+5^{993}\right)-\left(5+5^2+...+5^{992}\right)\)
\(4A=5^{993}-5\)
\(4A=5^3.5^{331}-5\)
mà 53 = 125
=> 4A là một lũy thừa của 125 ( đpcm )
\(A=5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow5A-A=4A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+...+5^{992}\right)=5^{993}-5\)
Mình nghĩ bạn ghi sai đề vì phải 4A+5 mới ra lũy thừa của 125
Là thế này:
\(\Rightarrow4A+5=5^{993}=\left(5^3\right)^{331}=125^{331}\)
nên 4A+5 là lũy thừa của 125
Ta có: \(A+5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+...+5^{992}\right)\)
\(\Rightarrow4A=5^{993}-5\)
=> 4A + 5 = 5993 = (53)331 = 125331
Vậy 4A + 5 là một lũy thừa của 125
A = 5 + 52 + 53 + ...+ 5992
5A = 52 + 53 + 54 + ... + 5993
5A - A = (52 + 53 + 54 + ... + 5993) - (5 + 52 + 53 + ...+ 5992)
4A = 5993 - 5
4A + 5 = 5993
4A + 5 = (53)331
4A + 5 =125331
Vậy 4A + 5 là một lũy thừa của 125
\(A=5+5^2+5^3+5^4+...+5^{992}\)
\(5A=5^2+5^3+5^4+...+5^{993}\)
\(5A-A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+5^4+...+5^{992}\right)\)
\(4A=5^{993}-5\)
\(4A+5=5^{993}\)
\(4A+5=\left(5^3\right)^{331}=125^{331}\)
vì 11^2015 - 1 luôn có taanj cùng bằng 1
mà 1 - 1 = 0 ; mà số tcos tận cùng bằng 0 luôn chia hết cho 2 và 5
tick nha
\(\frac{2}{5}+\frac{-1}{5}-\frac{3}{4}-\frac{-2}{3}\text{ }\)
\(=\frac{2}{5}+\frac{-1}{5}+\frac{-3}{4}+\frac{2}{3}\)
\(=\left(\frac{2}{5}+\frac{-1}{5}\right)+\left(\frac{-3}{4}+\frac{2}{3}\right)\)
\(=\frac{1}{5}+\left(\frac{-9}{12}+\frac{8}{12}\right)\)
\(=\frac{1}{5}+\frac{-1}{12}\)
\(=\frac{12}{60}+\frac{-5}{60}\)
\(=\frac{7}{60}\)
\(\frac{2}{5}+\left(-\frac{1}{5}\right)-\frac{3}{4}-\left(-\frac{2}{3}\right)\)
\(=\frac{2}{5}-\frac{1}{5}-\frac{3}{4}+\frac{2}{3}\)
\(=\frac{1}{5}-\frac{3}{4}+\frac{2}{3}\)
\(=\frac{12}{60}-\frac{45}{60}+\frac{40}{60}\)
\(=\frac{12}{60}-\left(\frac{45}{60}-\frac{40}{60}\right)\)
\(=\frac{12}{60}-\frac{5}{60}\)
\(=\frac{7}{60}\)
Ta có : \(A=1-3+3^2-3^3+...+3^{2010}-3^{2011}+3^{2012}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+....+3^{2011}-3^{2012}+3^{2013}\)
\(\Rightarrow3A+A=3^{2013}+1\)
\(\Rightarrow4A=3^{2013}+1\)
\(\Rightarrow4A-1=3^{2013}\) là lũy thừa bậc 3. (đpcm)
3.A=3 .\(\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)
3.A= \(3-3^2+3^3-3^4+..-3^{2012}+3^{2013}\)
3A+A=\(3-3^2+3^3-3^4+..-3^{2012}+3^{2013}\)+\(\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)
4A= \(1+3^{2013}\)
nên 4A-1=32013
Vậy 4A-1 là lũy thừa của 3
a/ \(A=5+5^2+5^3+..........+3^{2016}\)
\(\Leftrightarrow A=\left(5+5^4\right)+\left(5^2+5^5\right)+...........+\left(5^{2013}+5^{2016}\right)\)
\(\Leftrightarrow A=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2013}\left(1+5^3\right)\)
\(\Leftrightarrow A=5.126+5^2.126+............+5^{2013}.126\)
\(\Leftrightarrow A=126\left(1+5^2+........+5^{2013}\right)⋮126\left(đpcm\right)\)
b/ \(A=5+5^2+5^3+..........+5^{2016}\)
\(\Leftrightarrow5A=5^2+5^3+...............+5^{2016}+5^{2017}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+........+5^{2017}\right)-\left(5+5^2+.......+5^{2016}\right)\)
\(\Leftrightarrow4A=5^{2017}-5\)
\(\Leftrightarrow4A+5=5^{2017}\)
\(\Leftrightarrow4A+5\) là 1 lũy thừa
c/ Ta có :
\(4A+5=5^{2017}\)
Mà \(4A+5=5^x\)
\(\Leftrightarrow5^{2017}=5^x\)
\(\Leftrightarrow x=2017\)
Vậy ..
15 + ( x : 5 - 1 ) = 24
15 + ( x : 5 - 1 ) = 16
x : 5 - 1 = 16 - 15
x : 5 - 1 = 1
x : 5 = 1 + 1
x : 5 = 2
x = 10
Vậy x = 10
* Đề phải là '' Chứng minh rằng 4A + 5 là một lũy thừa của 125 ''
\(A=5+5^2+5^3+...5^{992}\)
\(\rightarrow5A=5^2+5^3+...+5^{993}\)
\(\rightarrow5A-A=-5+5^{993}\)
\(\rightarrow4A=5^{993}-5\)
\(\rightarrow4A+5=5^{993}-5+5\)
\(\rightarrow4A+5=5^{993}\)
\(\rightarrow4A+5=\left(5^3\right).331\)
\(\rightarrow4A+4=125^{331}\)
\(\text{Vậy}\)\(4A+5\)\(\text{là một lũy thừa của}\)\(125\)