K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8

a. Số A là số nguyên tố hay hợp số?

Đáp án: A là hợp số

b. Số A có phải là số chính phương không?

Đáp án: A không phải là số chính phương

14 tháng 8

A=5^101-5

vì 5^101 chia hết cho 5

5 chia hết cho 5

=>5^101-5 chia hết cho 5

trả lời a) đây là hợp số

22 tháng 9 2018

Ta có: A= 5+52+53+....+5100

A= ( 5+52)+( 53+54)+.......+(599+5100)

A= 5.(1+5)+ 53.(1+5)+....+599.(1+5)

A= 5.6 + 53.6 + .....+599.6

A= 6.( 5+53+.....+599)

A= 6.( 5+53+.....+599) chia hết cho 1, cho chính nó và cho 6 nên A là hợp số

22 tháng 9 2018

a, hop so vi chac chan co uoc =5,1,chinh no,........vv

b, ko

18 tháng 12 2016

a là hợp số

a ko phải là số chính phương

23 tháng 10 2024

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

a. Ta có: A = 5 + 5^2  + 5^3 +....+ 5^100       

⇒A = 5 + 5^2 + 5^3 + 5^4 + ... + 5^99 + 5^100        ⇒A = 5^1 + 5 + 5^3 . 1 + 5 + ... + 5 ^9 . 1 + 5        

⇒A = 5.6 + 5 3 .6 + ... + 5^99 .6               

A = 6. 5 + 5 3 + ... + 5^99  chia hết cho 6. Vì A chia hết cho 6 nên A là hợp số

b,A không hải số chính phương

23 tháng 10 2024

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

23 tháng 10 2015

b, A = 3 + 32 + 33 + ... + 3100

=> A = 31+2+3+...+100

=> A = 35050

Ta có : 35050 = 32525.2 = (32525)2 nên A là số chính phương

a, Vì SCP chia hết cho 3 hoặc chia 3 dư 1 => A là Hợp số

tick nhé bạn tròn 1900

23 tháng 10 2015

b) A = 3 + 32 + 33 + ... + 3100

=> A = 31+2+3+...+100

=> A = 35050

Ta có : 35050 = 32525.2 = (32525)2 nên A là số chính phương

22 tháng 7 2015

a. Ta có: A = 5 + 52 + 5+....+ 5100

      \(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

       \(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

       \(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)

              \(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

17 tháng 12 2016

còn câu b