Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(5A=5^2+5^3+5^4+...+5^{2018}\)
\(4A=5A-A=5^{2018}-5\Rightarrow A=\frac{5^{2018}-5}{4}\)
2/
5x có chữ số tận cùng ở kết quả là 5
=> 4A+5 thì kết quả cũng phải có chữ số tận cùng là 5 => 4A có chữ số tận cùng ở kết quả là 0 => A=4
=> 4A+5=25=52=5x => x=2
A = 5 + 52 + ........+ 52017
5A = 5.( 5 + 52 + ........+ 52017 )
5A = 52 + 53 + ..............+ 52018)
5A - A = (5 + 52 + ........+ 52017) - (52 + 53 + ..............+ 52018)
4A = 5 - 52018
=> 5x = 52018 + 5
Vậy x = 2018
t.i.c.k m nha
A = 5 + 5^2 + 5^3 + ... + 5^2017
5A = 5^2 + 5^3 + 5^4 + ... + 5^2018
4A = 5^2018 - 5
4A + 5 = 5^2018 - 5 + 5
4A + 5 = 5^2018
5A=52+53+...+52018
5A-A=52018-5
4A=52018-5
4A+5=52018-5=5
4A+5=52018
Ta có: \(A=5+5^2+5^3+...+5^{2017}\)
\(5A=5^2+5^3+5^4+...+5^{2018}\)
\(5A-A=5^{2018}-5\)
Hay \(4A=5^{2018}-5\)
\(\Rightarrow4A+5=5^x\)
\(\Rightarrow\left(5^{2018}-5\right)+5=5^x\)
\(\Rightarrow5^{2018}=5^x\)
\(\Rightarrow x=2018\)
Học tốt nha!!!
A = 5 + 52 + 53 + ... + 52017
5A = 52 + 53 + 54 + ... + 52018
5A - A = (52 + 53 + 54 + ... + 52018) - (5 + 52 + 53 + ... + 52017)
4A = 52018 - 5
4A + 5 =52018
4A + 5 = 5.52017
=> x = 52017
\(A=5+5^2+5^3+......+5^{2017}\)
\(\Rightarrow5A=5^2+5^3+5^4+........+5^{2018}\)
\(\Rightarrow5A-A=4A=5^{2018}-5\)
\(\Rightarrow A=\frac{5^{2018}-5}{4}\)
Thay A vào biểu thức ta được
\(4.\frac{5^{2018}-5}{4}+5=5^x\)\(\Leftrightarrow5^{2018}-5+5=5^x\)\(\Leftrightarrow5^{2018}=5^x\)\(\Leftrightarrow x=2018\)
Vậy \(x=2018\)
Ta có
\(A=5+5^2+5^3+...+5^{2017}\)
\(\Rightarrow5A=5\cdot\left(5+5^2+5^3+.......+5^{2017}\right)\)
\(\Rightarrow5A=5^2+5^3+5^4+......+5^{2018}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{2018}\right)-\left(5+5^2+5^3+...+5^{2017}\right)\)
\(\Rightarrow4A=5^{2018}-5\) \(\)
Mà \(4A+5=5^x\)
\(\Rightarrow\left(5^{2018}-5\right)+5=5^x\)
\(\Rightarrow5^{2018}=5^x\)
\(\Rightarrow x=2018\)
\(A=5+5^2+5^3+...+5^{2016}\)
\(5A=5^2+5^3+5^4+...+5^{2017}\)
\(\rightarrow5A-A=5^{2017}-5\)
\(4A=5^{2017}-5\)
\(\Rightarrow4A+5=5^{2017}-5+5\)
Mà \(4A+5=5^x\)
\(\Rightarrow5^x=5^{2017}\)
Vậy \(x=2017\)
A = 1 + 5 + 52 + 53 + ....+ 52017
A . 5 = 5 + 52 + 53 + 54 + .... + 52018
A . 5 - A = ( 5 + 52 + 53 + 54 + .... + 52018 ) - ( 1 + 5 + 52 + 53 + ......+ 52017 )
A . 4 = 52018 - 1
Ta có : 52018 - 1 + 1 = 5n + 1
52018 = 5n+1
Suy ra : 2018 = n + 1
2018 - 1 = n
2017 = n
chuẩn mình cũng làm thế
đó là đề thi khảo sát giữa học kì 1
`A=5+5^{2}+5^{3}+...+5^{2017}`
`=>5A=5^{2}+5^{3}+5^{4}+...+5^{2018}`
`=>5A-A=(5^{2}+5^{3}+5^{4}+...+5^{2018})-(5+5^{2}+5^{3}+...+5^{2017})`
`=>4A=5^{2018}-5`
`=>4A+5=5^{2018}=5^{x}`
`=>x=2018`
A = 5 + 52 + 53 +.....+52016+ 52017
5.A = 52 + 53+......+52016+ 52017+ 52018
5A - A = 52018 - 5
4A = 52018 - 5
4A + 5 = 52018 - 5 + 5 = 5x
⇔ 52018 = 5x
x = 2018