Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
ta có x nguyên khi a-5 là bội của 7
hay \(a-5=7k\text{ với k là số nguyên hay }a=7k+5\)
để \(\frac{1}{x}=\frac{7}{5-a}\text{ là số nguyên thì }5-a\text{ là ước của }7\text{ hay}\)
\(5-a\in\left\{\pm7,\pm1\right\}\Rightarrow a\in\left\{12,6,4,-2\right\}\)
Thầy( cô) Nguyễn Minh Quang ơi, em ko hiểu ở chỗ '' Để \(\frac{1}{x}=\frac{7}{5-a}\)thì 5-a là ước của 7''
(p là số nguyên tố)
TH1: n-2 =1 và 2n-5 =p
n-2 =1 => n=3 . Thay n=3 vào 2n-5 =2.3-5=1=>A không là số nguyên tố. (LOẠI)
TH2: 2n-5=1 và n-2=p
2n-5=1=>n=3. Thay n=3 vào n-2 =3-2 =1=> A không là số nguyên tố .(Loại)
TH3: 2n-5=-1 và n-2 = - p
2n-5=-1=>n=2 . Thay n=2 vào n-2=1=> A không là số nguyên tố (loại)
TH4: n-2=-1 và 2n-5 =-p
n-2=-1=>n=1 thay n=1 vào 2n-5 =-3=> A là số nguyên tố (NHẬN)
Mèo không hiểu lắm, còn cách nào khác không, hoặc là làm chi tiết hơn
Ta có \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)
\(\Rightarrow x=3.\left(-5\right)=-15;y=\left(-5\right).5=-25\)
Vậy x = -15 ; y = -25
vì đồ thi hàm số đã cho đi qua điểm trên trục tung có tung độ là 5
=> 5 = a.0 + a + 1
=> a=4
=> hàm số là: y=4a+5
Ta có: \(P=\frac{5}{4}:\frac{a}{a+1}=\frac{5}{4}.\frac{a+1}{a}=\frac{5a+5}{4a}\)
Nếu P nguyên thì 4P cũng nguyên, vì thế ta tìm đk để 4P nguyên, sau đó thử lại xem P có nguyên không.
\(4P=\frac{20a+20}{4a}=4a+\frac{5}{a}\)
Để 4P nguyên thì a là ước của 5. Ta có bảng:
a | 5 | 1 | -5 | -1 |
P | 3/2 | 5/2 | 1 | 0 |
Kết luận | Loại | Loại | Chọn | Chọn |
Vậy ta tìm được 2 giá trị của a là -5 và -1.
Theo đề bài ta có: 5/4 : a/a+1 = 5/4 . a+1/ a = 5(a+1) / 4a = 5a/4a + 5/4a = a + 5/4a
Để 5/4 : a/a+1 thuộc Z => 5/4a thuộc Z= > 5 chia hết cho 4a hay 4a thuộc Ư(5)
4a thuộc { -5;-1;1;5}
a thuộc { -5/4 ; -1/4 ; 1/4; 5/4}
Mà a là số nguyên => ko có giá trị nào của a thỏa mãn đề bài
\(5^a+25\)
\(+,a=0\Rightarrow5^a+25=26\left(l\right)\)
\(+,a=1\Rightarrow5^a+25=30\left(l\right)\)
\(+,a=2\Rightarrow5^a+25=50\left(l\right)\)
\(+,a=3\Rightarrow5^a+25=150\left(l\right)\)
\(+,a\ge4\Rightarrow5^a=\left(....25\right)+25=\left(....50\right)\Rightarrow\hept{\begin{cases}5^a+25⋮2\\5^a+25⋮4̸\end{cases}}\left(l\right)\)
a) \(a_n=\frac{\left(1+n\right).n}{2}\)
\(a_{n+1}=\frac{\left(2+n\right)\left(1+n\right)}{2}\)
b) \(a_n+a_{n+1}=\frac{\left(1+n\right).n}{2}+\frac{\left(2+n\right)\left(1+n\right)}{2}\)
\(=\left(1+n\right)\left(\frac{n}{2}+\frac{2+n}{2}\right)=\left(1+n\right)\left(1+n\right)=\left(1+n\right)^2\) là số chính phương.
\(A=\dfrac{2\left(2n-1\right)+7}{2n-1}=2+\dfrac{7}{2n-1}\Rightarrow2n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
mà A là số chình phương nên n = 1
Ai trả lời mik đi ạ mik tick cho