Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A \(=\frac{x^2-4}{2}\cdot\sqrt{\frac{2^2}{\left(x-2\right)^2}}\) \(=\frac{x^2-4}{2}\cdot\left|\frac{2}{x-2}\right|\)
+ Với x < 2 ta có \(A=\frac{x^2-4}{2}\cdot\frac{2}{2-x}\)
\(A=\frac{\left(x+2\right)\left(x-2\right)}{2-x}=-\left(x+2\right)\)
+ Với x > 2 ta có : \(A=\frac{x^2-4}{2}\cdot\frac{2}{x-2}\)
\(A=\frac{\left(x-2\right)\left(x+2\right)}{x-2}=x+2\)
câu b và c tương tự
A = \(\dfrac{\sqrt{4x^2-4x+1}}{4x-2}\)
A = \(\dfrac{\sqrt{\left(2x-1\right)^2}}{2\left(2x-1\right)}\)
A = \(\dfrac{\left|2x-1\right|}{2\left(2x-1\right)}\)
\(\left|A\right|=\dfrac{2x-1}{2\left(2x-1\right)}\) \(\Rightarrow\left|A\right|=\dfrac{1}{2}=0,5\left(x\ne0,5\right)\)
Đề bài sai: Khi \(x=4\) thì \(A=\dfrac{1}{2};B=\dfrac{28}{9};\dfrac{A}{B}=\dfrac{9}{56};\dfrac{x-2}{4\sqrt{x}}=\dfrac{1}{4}\Rightarrow\dfrac{A}{B}\ne\dfrac{x-2}{4\sqrt{x}}\)
a)\(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{x^2-1}{x-3}=\frac{\sqrt{\left(x-2\right)^4}}{\sqrt{\left(3-x\right)^2}}+\frac{x^2-1}{x-3}=\frac{\left(x-2\right)^2}{x-3}+\frac{x^2-1}{x-3}=\frac{x^2-4x+4+x^2-1}{x-3}=\frac{2x^2-4x+3}{x-3}\)
Tại x=0,5 thay vào ta có:
\(A=\frac{2\cdot\left(0,5\right)^2-4\cdot0,5+3}{0,5-3}=-\frac{3}{5}\)
b)\(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2}\cdot\sqrt{x+2}}{\sqrt{x+2}}\)\(=4x-\sqrt{8}+x^2\)
Tại \(x=-\sqrt{2}\) thay vào ta có:
\(B=4\cdot\left(-\sqrt{2}\right)+\left(-\sqrt{2}\right)^2=2-4\sqrt{2}\)
Xét hiệu:
\(A=\frac{x^4+1}{\left(x^2+1\right)^2}-\frac{1}{2}=\frac{2\left(x^4+1\right)-\left(x^4+2x^2+1\right)}{2\left(x^2+1\right)^2}=\frac{x^4-2x^2+1}{2\left(x^2+1\right)^2}=\frac{\left(x^2-1\right)^2}{2\left(x^2+1\right)^2}\ge0\)Dấu bằng xảy ra khi x=1
a) \(B=\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{x^2+1}{x-3}=\frac{\left(x-2\right)^2}{3-x}+\frac{x^2+1}{x-3}\\ =\frac{-\left(x-2\right)^2+x^2+1}{x-3}=\frac{-x^2+4x-4+x^2+1}{x-3}=\frac{4x-3}{x-3}\)
b) khi x=0,5 thì
\(B=\frac{4\cdot0,5-3}{0,5-3}=\frac{2}{5}\)
a) \(\sqrt{12}-3\sqrt{75}+0,5\sqrt{\left(-6\right)^2\cdot3}\)
\(=2\sqrt{3}-15\sqrt{3}+0,5\sqrt{108}\)
\(=-13\sqrt{3}+3\sqrt{3}\)
\(=-10\sqrt{3}\)
b) \(3\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{4+2\sqrt{3}}\)
\(=3\left|\sqrt{2}-\sqrt{3}\right|-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=3\left(\sqrt{3}-\sqrt{2}\right)-\left|\sqrt{3}+1\right|\)
\(=3\sqrt{3}-3\sqrt{2}-\sqrt{3}-1\)
\(=2\sqrt{3}-3\sqrt{2}-1\)
c) \(\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\div\frac{1}{x-2\sqrt{x}+1}\)
\(=\frac{2x+1-\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)
\(=\sqrt{x}-1\)
\(a.P=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{2}{x-4}\right).\left(\sqrt{x}-1+\dfrac{\sqrt{x}-4}{\sqrt{x}}\right)=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{x-4}{\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-4}.\dfrac{x-4}{\sqrt{x}}=\sqrt{x}+3\left(x>0;x\ne4\right)\)
\(b.P=x+3\) ⇔ \(\sqrt{x}+3=x+3\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=1\left(TM\right)\end{matrix}\right.\)
KL........
\(< =>\sqrt[3]{x+5}=-2\)
<=> \(\left(\sqrt[3]{x+5}\right)^3=-8\)
<=> \(x+5=-8\)
<=> x=-13