Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A thuộc Z thì 3n - 5 chia hết n + 4
<=> 3n + 12 - 17 chia hết n + 4
=> 3.(n + 4) - 17 chia hết n + 4
=> 17 chia hết n + 4
=> n + 4 thuộc Ư(17) = {-1;1;-17;17}
=> n = {-5;-3;-21;13}
gọi UCLN(2n+1,3n+1)=d
=>6n+2 chia hết cho d
6n+3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1/3n+1 tối giản
n+2/n-5=n-5+7/n-5
=1+7/n-5
suy ra n-5 thuộc Ư(7)
Ư(7)={1;-1;7;-7)
ta có:
n-5=1
n=6
n-5=-1
n=4
n-5=7
n=12
n-5=-7
n=-2
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
de a nguyen thi 3n-7/n+1 phai nguyen
=>3n-7 chia het cho n+1
=>3n-7-3*(n+1)chia het cho n+1
=>-10 chia het cho n+1
n+1 thuốc Ư(-10)
tự do giải ra ta cón
n=0,9,1,4,-2,-3,-6,-9