K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

b) Ta có

     A = 3 + 32 + ... + 32004.

=> A = 3 ( 1+ 3 + 32 ) + 34  ( 1+ 3 + 32 ) + ... + 32001 ( 1+ 3 + 32 )

=> A = 3 . 13 + 34 . 13 + ... + 32001 . 13

=> A = 13 ( 3 + 34 + ... + 32001)  chia hết cho 13.

   Lại có :

     A = 3 + 32 + ... + 32004.

=> A = ( 3 + 33) + (32 + 34) + ... + ( 32002 + 32004)

=> A = 3 ( 1+ 9) + 32 ( 1+ 9) + ... + 32003 ( 1+ 9)

=> A = 10 ( 3 + 32 + ... + 3 2003) chia hết cho 10.

 Vậy A vừa chia hết cho 13 vừa chia hết cho 10 mà ( 13;10) = 1

=> A chia hết cho 130.

30 tháng 3 2017

A=3+32+33+......+32004

3A=32+33+......+32005

3A-A= ( 32+33+......+32005 ) - ( 3+32+33+......+32004 )

2A=32005-3

A=\(\frac{3^{2005}-3}{2}\)

15 tháng 2 2016

Ta có:

Ư(13)={1;13}

12 tháng 2 2016

Có ai làm đc chưa vậy

 

12 tháng 2 2016

Ai giải giùm đi. Đang cần gấp nè

ta có: A=(3+3^2+3^3+3^4)+....+(3^2001+3^2002+3^2003+3^2004)

=>A=120+...+(3^2000.3+3^2000.3^2+3^2000.3^3+3^2000.3^4)

=>A=120+...+3^2000(3+3^2+3^3+3^4)

=>A=120+...3^2000.120

=>A=(1+....+3^2000).120

vì 120 chia hết cho 120 nên A chia hết cho 120=>A chia hết cho 10

A=3+3^2+....+3^2004

=>A=(3+3^2+3^3)+....+(3^2002+3^2003+3^2004)

=>A=39+....+ tự tính như trên

vì 39 chia hết cho 13 nên A chia hết cho 13

ta có: A chia hết cho 10 và A chia hết cho 13 và (10;13)=1 nên A chia hết cho 10.13=>A chia hết cho 130

vậy....

5 tháng 2 2016

chứng minh chia hết cho 10 và 13

2 tháng 5 2016

Ta thấy từng số hạng của A chia cho 3 dư 1 (cái này cũng là định lý fecmat nhưng làm dài dòng lắm)

Nên A chia cho 3 có số dư là 60 mà 60 chia hết cho 3 Nên A chia hết cho 3

b, Thì lấy 2A-A sẽ ra

c, Mình ko bt làm

30 tháng 3 2018

giả sử A là số chính phương

Ta có: \(A=3+3^2+3^3+...+3^{2004}\)

               \(=3.\left(1+3+3^2+....+3^{2003}\right)\)

=> A chia hết cho 3

=> A chia hết cho 32 (vì A là số chính phương)

=> 1 + 3 + 32 + ... + 32003 chia hết cho 3 (Vô lí)

=> A không phải là số chính phương

P/s: Không biết đúng không, làm đại

30 tháng 3 2018

Ta có : \(3⋮3,3^2⋮3,3^3⋮3,.....,3^{2004}⋮3\)

         => A\(⋮\)3 (1)

ta lại có : \(3^2⋮3^2,3^3⋮3^2,....,3^{2004}⋮3^2\) mà 3 không chia hết cho \(3^2\)

        => A không chia hết cho 3^2 (2)

từ (1) , (2) => A không là số chính phương