Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3+32+33+.......+32012
= ( 3+32+33 ) +.......+( 32010+32011+32012)
= 3 ( 1+3+9 ) +........+ 32010 ( 1+3+9)
= 3.13+......+32010.13
= 13 ( 3+......+ 32010)
Vậy biểu thức trên chia hết cho 13.
Bạn có thể làm thêm mất biểu thức ở hàng thứ hai để chi tiết hơn
1) B = 33 + 34 + 35 + ... + 361 + 362 ( có 60 số, 60 chia hết cho 3)
B = (3^3 + 3^4 + 3^5) + (3^6 + 3^7 + 3^8) + ... + (3^60 + 3^61 + 3^62)
B = 3^3.(1 + 3 + 3^2) + 3^6.(1 + 3 + 3^2) + ... + 3^60.(1 + 3 + 3^2)
B = 3^3.13 + 3^6.13 + ... + 3^60.13
B = 13.(3^3 + 3^6 + ... + 3^60) chia hết cho 13
=> số dư khi chia B cho 13 là 0
2) Do 4a + 3b chia hết cho 7
=> 2.(4a + 3b) chia hết cho 7
=> 8a + 6b chia hết cho 7
=> 7a + a + 7b - b chia hết cho 7
Do 7a + 7b chia hết cho 7 => a - b chia hết cho 7
Ủng hộ mk nha ☆_☆★_★^_-
B = 33 + 34 + 35 + ... + 361 + 362 ( có 60 số, 60 chia hết cho 3)
B = (3^3 + 3^4 + 3^5) + (3^6 + 3^7 + 3^8) + ... + (3^60 + 3^61 + 3^62)
B = 3^3.(1 + 3 + 3^2) + 3^6.(1 + 3 + 3^2) + ... + 3^60.(1 + 3 + 3^2)
B = 3^3.13 + 3^6.13 + ... + 3^60.13
B = 13.(3^3 + 3^6 + ... + 3^60) chia hết cho 13
=> số dư khi chia B cho 13 là 0
2) Do 4a + 3b chia hết cho 7
=> 2.(4a + 3b) chia hết cho 7
=> 8a + 6b chia hết cho 7
=> 7a + a + 7b - b chia hết cho 7
Do 7a + 7b chia hết cho 7 => a - b chia hết cho 7
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
\(A=3+3^2+3^3+...+3^{2012}+3^{2013}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{2011}+3^{2012}+3^{2013}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{2011}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+...+3^{2011}\right)\)
\(=13\left(3+...+3^{2011}\right)\)
Vì 13 chia hết cho 13 nên \(13\left(3+...+3^{2011}\right)\) chia hết cho 13
Vậy A chia hết cho 13
A=(3+32+33)+(34+35+36)+...+(32011+32012+32013)
A=3(1+3+32)+34(1+3+32)+...+32011(1+3+32)
A=3.13+3^4.13+...+3^2011.13
A=13(3+3^4+...+3^2011)chia hết cho 13
tick mk nha
4a=4+42+43+......+42013
4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)
3a=42013-1
a=42013-1
3
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
ta có
\(1+3+3^2+..+3^{2000}=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+..+\left(3^{1998}+3^{1999}+3^{2000}\right)\)
\(=13.1+13\cdot3^3+..+13\cdot3^{1998}\) chia hết cho 13
tương tự
\(1+4+4^2+..+4^{2012}=\left(1+4+4^2\right)+..+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21.1+21\cdot4^3+..+21.4^{2010}\) chia hết cho 21
A = 31 + 32 + 33 + ....... + 32012
A = ( 31 + 32 + 33) + ( 34 + 35 + 36 ) + ....... + ( 32010 + 32011 + 32012)
A = 1 . ( 31 + 32 + 33) + 34 . ( 31 + 32 + 33) + ......... + 32010 . ( 31 + 32 + 33)
A = 1 . 39 + 34 . 39 + ........ + 32010 . 39
A = 39 . ( 1 + 34 + .......... + 32020 ) \(⋮\)13\(\rightarrowĐPCM\)
# HOK TỐT #
A = 31 + 32 + 33 +34 + 35 + 36 + . . . + 32010 + 32011 + 32012
A = ( 31 + 32 + 33 ) + ( 34 + 35 + 36 )+ . . . + ( 32010 + 32011 + 32012 )
A = 31 (1 + 3 + 32 ) + 34 (1 + 3 + 32 ) + . . . + 32010 (1 + 3 + 32 )
A = 31 . 13 + 34 . 13 + . . . + 32010 . 13
A = 13 .( 31 + 34 + . . . + 32010 ) \(⋮\)13 ( ĐPCM)
HOK TỐT