Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=2^{2018}-1hayA=2^{2018}-1\)
2; 3 tuong tu
1) A = 1 + 2 + 22 + 23 + .... + 22018
2A = 2 + 22 + 23 + 24 + ..... + 22019
2A - A = ( 2 + 22 + 23 + 24 + ..... + 22019 ) - ( 1 + 2 + 22 + 23 + .... + 22018 )
Vậy A = 22019 - 1
2) B = 1 + 3 + 32 + 33 + ..... + 32018
3A = 3 + 32 + 33 + ...... + 32019
3A - A = ( 3 + 32 + 33 + ...... + 32019 ) - ( 1 + 3 + 32 + 33 + ..... + 32018 )
2A = 32019 - 1
Vậy A = ( 32019 - 1 ) : 2
3) C = 1 + 4 + 42 + 43 + ...... + 42018
4A = 4 + 42 + 43 + ...... + 42019
4A - A = ( 4 + 42 + 43 + ...... + 42019 ) - ( 1 + 4 + 42 + 43 + ...... + 42018 )
3A = 42019 - 1
Vậy A = ( 42019 - 1 ) : 3
A=1+2+22+23+...+22018+22019
>2A=2(1+2+22+23+...+22018+22019)
=>2A=2+22+23+...+22018+22019
=>2A-A=(2+22+23+...+22019+22020)-(1 + 2 + 22 + 23 + ... + 22018 + 22019)
=>A=22020-1
B=1 + 32 + 34 + 36 +...+ 32018 + 32020
=>9B=3(1 + 32 + 34 + 36 +...+ 32018 + 32020)
=>9B=3+32 + 34 + 36 +...+ 32020 + 32022
=>9B-B=(3+32 + 34 + 36 +...+ 32018 + 32020)-(1 + 32 + 34 + 36 +...+ 32018 + 32020)
=.8B=32022-1
=>B=32022:8-1
\(D=3^0+3^1+3^2+3^3+...+3^{2018}\)
\(\Rightarrow3D=3^1+3^2+3^3+3^4+....+3^{2018}+3^{2019}\)
\(\Rightarrow3D-D=\left(3^1+3^2+3^3+3^4+...+3^{2018}+3^{2019}\right)\)\(-\left(3^0+3^1+3^2+3^3+...+3^{2018}\right)\)
\(\Rightarrow2D=3^{2019}-1\)
\(\Rightarrow D=\frac{3^{2019}-1}{2}\)
\(A=3^0+3^1+3^2+......+3^{2018}\)
\(3A=3.\left(3^0+3^1+3^2+.....+3^{2018}\right)\)
\(3A=3^1+3^2+3^3+........+3^{2019}\)
\(3A-A=\left(3^1+3^2+3^3+......+3^{2019}\right)-\left(3^0+3^1+3^2+.....+3^{2018}\right)\)
\(2A=3^{2019}-3^0\)
\(A=\left(3^{2019}-3^0\right):2\)
\(B=6^{10}+6^{11}+6^{12}+....+6^{2012}\)
\(6B=6.\left(6^{10}+6^{11}+6^{12}+.....+6^{2012}\right)\)
\(6B=6^{11}+6^{12}+6^{13}+.......+6^{2013}\)
\(6B-B=\left(6^{11}+6^{12}+6^{13}+......+6^{2013}\right)-\left(6^{10}+6^{11}+6^{12}+.......+6^{2012}\right)\)
\(5B=6^{2013}-6^{10}\)
\(B=\left(6^{2013}-6^{10}\right):5\)
\(A=3^0+3^1+3^2+3^3+...+3^{2018}\)
\(3A=3^1+3^2+3^3+3^4+...+3^{2019}\)
\(3A-A=3^{2019}-3^0\)
\(\Rightarrow A=\left(3^{2019}-1\right):2\)