Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = 3101 - 3
2A = 3101 - 3
Ta có:
2A + 3 = 3n
3101 - 3 +3 = 3n
3101 = 3n
=> n = 101
Vậy n = 101
3A=32+33+......+3101
3A-A=3101-3
A=3101-2:2
2A+3=3n
2x3101-3:2+3=3n
3101-3+3=3n
3101=3n
n=101
3A=32+33+......+3101
3A-A=3101-3
A=3101-2:2
2A+3=3n
2x3101-3:2+3=3n
3101-3+3=3n
3101=3n
n=101
A=3+3^2+3^3+..........+3^99+3^100
3A=3^2+3^3+...............+3^100+3^101
=> 3A-A= (3^2+3^3+......+3^100+3^101) - (3+3^2+3^3+........+3^99+3^100)
=> 2A= 3^101 - 3
=>2A+3=3^101
=>3^n=3^101
=> n=101
Ta có:
\(A=3+3^2+3^3+...+3^{99}+3^{100}\)
\(2A=3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(2A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+...+3^{99}+3^{100}\right)\)\(A=3^{101}-3\)
\(2A+3=3^{101}-3+3=3^{101}=3^n\)
\(n=101\)
ban bam vao muc cau hoi tuong tu se co day mih vua xem xong
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = 3101 - 3
2A = 3101 - 3
Ta có:
2A + 3 = 3n
3101 - 3 +3 = 3n
3101 = 3n
=> n = 101
Vậy n = 101
A = 3+32+33+...+3100
3A = 32+33+34+...+3101
2A = 3A - A = 3101 - 3
=> 2A + 3 = 3101
Theo đề bài: 2A + 3 = 3n
=> 3101 = 3n
=> n = 101
3A = 3^2+3^3+...+3^101
3A-A=3^2+3^3+...+3^101-(3+3^2+3^3+...+3^100)
2A=3^101-A
2A+A=3n
Suy ra : 3^101-3+3=3n
Suy ra : 3^101=3n
Suy ra : n=3^100
bấm đúng cho mik vs nha
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+....+3^{101}\)
\(3A-A=\left(3^2-3^2\right)+....+\left(3^{100}-3^{100}\right)+3^{101}-3\)
2A = 3101 - 3
\(A=\frac{3^{101}-3}{2}\)
2A + 3 = \(\frac{3^{101}-3}{2}.2+3=3^{101}-3+3=3^{101}\)
Vậy n = 101
A = 3 + 32 + 33 + 34 + ... + 3100
3A = 3( 3 + 32 + 33 + 34 + ... + 3100 )
= 32 + 33 + 34 + 35 + ... + 3101
3A - A = ( 32 + 33 + 34 + 35 + ... +101 ) - ( 3 + 32 + 33 + 34 + ... + 3100 )
=> 2A = 32 + 33 + 34 + 35 + ... +3101 - 3 - 32 - 33 - 34 - ... - 3100
2A = 3101 - 3
2A + 3 = 3n
=> 3101 + 3 - 3 = 3n
=> 3101 = 3n
=> n = 101
\(A=3+3^2+3^3+3^4+...+3^{100}\)\
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{100}+3^{101}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Leftrightarrow3^{101}-3+3=3^n\)
\(\Rightarrow3^{101}=3^n\Leftrightarrow n=101\) Vậy \(n=101\)