![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ax+2x+ay+2y+4=x\left(a+2\right)+y\left(a+2\right)+4=\left(a+2\right)\left(x+y\right)+4=\left(a+2\right)\left(a-2\right)+4=a^2-4+4=a^2\)
từ a-2=x+y => y=a-2-x
![](https://rs.olm.vn/images/avt/0.png?1311)
bn post nhiều nên mình ghi đáp án thôi nhé phần nào sai đề mình cho qua
b)\(\left(x+1\right)\left(xy+1\right)\)
c)\(\left(a+b\right)\left(x+y\right)\)
d)\(\left(x-a\right)\left(x-b\right)\)
e)\(\left(x+y\right)\left(xy-1\right)\)
f)\(\left(a-b\right)\left(x^2+y\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,7x^2-7xy-4x+4y\)
\(=7x\left(x-y\right)-4\left(x-y\right)\)
\(=\left(7x-4\right)\left(x-y\right)\)
\(b,2x-2y+ax-ay\)
\(=2\left(x-y\right)+a\left(x-y\right)\)
\(=\left(a+2\right)\left(x-y\right)\)
\(c,x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
\(d,ax+ay-2x-2y\)
\(=a\left(x+y\right)-2\left(x+y\right)\)
\(=\left(a-2\right)\left(x+y\right)\)
\(e,x\left(a+b\right)-a-b=x\left(a+b\right)-\left(a+b\right)\)
\(=\left(x-1\right)\left(a+b\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) x - y - a(x - y) = (x - y) - a(x - y) = (1 - x)(x - y)
2) a - b + x(a - b) = (a - b) + x(a - b) = (1 + x)(a - b)
3) a(x - y) - x + y = a(x - y) - (x - y) = (a - 1)(x - y)
4) x(a - b) - a + b = x(a - b) - (a - b) = (x - 1)(a - b)
5) ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
6) ax + ay - bx - by = a(x + y) - b(x + y) = (a - b)(x + y)
7) - 2x - 2y + ax + ay = -2(x + y) + a(x + y) = (a - 2)(x + y)
8) x2 - xy - 2x + 2y = x(x - y) - 2(x - y) = (x - 2)(x - y)
Sorry nha, giờ mình chỉ rảnh làm 8 câu thôi
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2abxy+b^2y^2=a^2x^2+a^2y^2+x^2b^2+b^2y^2\)
\(\Leftrightarrow2abxy=a^2y^2+x^2b^2\)
\(\Leftrightarrow\left(ay-xb\right)^2=0\)
\(\Leftrightarrow ay=xb\)
hay \(\dfrac{a}{x}=\dfrac{b}{y}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) TA có :
\(\left(x^2+cx+2\right)\left(ax+b\right)=ax^3+bx^2+acx^2+bcx+2ax+2b\)
\(=ax^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\) = \(=x^3-x^2-2\)
=> a = 1
=>\(2b=-2\Rightarrow b=-1\)
=> b + ac = -1 => -1 + 1.c = -1 => -1 + c = -1 => c = -1 + 1 = 0
VẬy a = 1 ; b = -1 ; c = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1 ) Ta có :
\(ax+2x+ay+2y+4\)
\(=x\left(a+2\right)+y\left(a+2\right)+4\)
\(=\left(x+y\right)\left(a+2\right)+4\)
\(=\left(a-2\right)\left(a+2\right)+4\) ( do \(x+y=a-2\) )
\(=a^2-4+4\)
\(=a^2\left(đpcm\right)\)
2 ) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+bx^2-ax^2-bx-ax-b=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+x^2\left(b-a\right)-\left(b+a\right)x-b=ax^3+x^2c-0.x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}b-a=c\\b+a=0\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-a=c\\1+a=0\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-a=c\\a=-1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=2\\a=-1\\b=1\end{matrix}\right.\)
Vậy \(a=-1;b=1;c=2\)
Ta có:
\(ax+2x+ay+2y+4\)
\(=\left(ax+ay\right)+\left(2x+2y\right)+4\)
\(=a\left(x+y\right)+2\left(x+y\right)+4\)
\(=\left(x+y\right)\left(a+2\right)+4\)
Thay \(x+y=a-2\), ta được
\(=\left(a-2\right)\left(a+2\right)+4\)
\(=a^2-4+4\)
\(=a^2\)
\(VT=ax+2x+ay+2y+4\)
\(=a\left(x+y\right)+2\left(x+y\right)+4\)
\(=a\left(a-2\right)+2\left(a-2\right)+4\)
\(=a^2-2a+2a-4+4=a^2=VP\)
Ta có: \(VT=ax+2x+ay+2y+4\)
\(=\left(c+y\right)a+2\left(x+y\right)+4\)
\(=\left(a+2\right)\left(x+y\right)+4\)
mà \(a-2=x+y\)
\(\Rightarrow VT=\left(a+2\right)\left(a-2\right)=a^2-4+4=a^2\)
\(\Leftrightarrow VP\) -> ĐPCM.