K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
11 tháng 1 2024

Nhận thấy : \(2x^4+3x^2\ge0\forall x\)

\(=>2x^4+3x^2+1\ge1\)

\(=>\left|2x^4+3x^2+1\right|=2x^4+3x^2+1\)

và : \(-2x^4-x^2=-\left(2x^4+x^2\right)\le0\)

\(=>-2x^4-x^2-1\le-1\)

\(=>\left|-2x^4-x^2-1\right|=-\left(-2x^4-x^2-1\right)\\ =2x^4+x^2+1\)

Lúc này biểu thức A được viết lại thành :

\(A=2x^4+3x^2+1-\left(2x^4+x^2+1\right)\\ =2x^2\ge0\forall x\)

Hay biểu thức A luôn không âm với mọi giá trị của x (DPCM)

24 tháng 6 2020

A(x) = 5x3 + 4x2 + 7 - 5x3 + x2 - 2

        = 5x2 + 5

Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\Rightarrow5x^2+5\ge5>0\forall x\)

=> A(x) luôn dương với mọi x

B(x) = -5x2 + 3x + 7 + 4x2 - 3x - 9

        = -x2 - 2

Ta có : \(x^2\ge0\forall x\Rightarrow-x^2\le0\Rightarrow-x^2-2\le-2< 0\forall x\)

=> B(x) luôn âm với mọi x 

24 tháng 6 2020

\(A\left(x\right)=\left(5x^3-5x^3\right)+\left(4x^2+x^2\right)+\left(7-2\right)=5x^2+5>0\)

\(B\left(x\right)=\left(-5x^2+4x^2\right)+\left(3x-3x\right)+\left(7-9\right)=-x^2-2< 0\)

7 tháng 7 2018

Ta có : 

\(P=2x\left(x+y-1\right)+y^2+1\)

\(\Rightarrow P=2x^2+2xy-2x+y^2+1\)

\(\Rightarrow P=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)\)

\(\Rightarrow P=\left(x+y\right)^2+\left(x-1\right)^2\ge0\forall xy\)

\(\RightarrowĐpcm\)

7 tháng 7 2018

Công thức đây :

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

9 tháng 4 2019

a) \(A=y^4+y^2+y^2+1=y^2\left(y^2+1\right)+\left(y^2+1\right)=\left(y^2+1\right)\left(y^2+1\right)=\left(y^2+1\right)>0\)với mọi y

b) \(B=\left(6x^2-2x^2\right)+\left(3xy-3xy\right)+\left(-2y^2+3y^2\right)+\left(-5+5\right)\)

\(=4x^2+y^2\ge0\)với mọi x, y

25 tháng 6 2019

a ,  x^2 - 2x - (3x^2 - 5x + 4) + (2x^2 - 3x + 7) 

= x^2 - 2x - 3x^2 + 5x - 4 + 2x^2 - 3x + 7 

= (x^2 - 3x^2 + 2x^2) + (-2x + 5x - 3x) + (-4 + 7) 

=  3 

Vậy GTBT ko phụ thuộc vào biến 

b,  (2x^3 - 4x^2 + x - 1) - (5 - x^2 + 2x^3) + 3x^2 - x 

= 2x^3 - 4x^2 + x - 1 - 5 + x^2 - 2x^3 + 3x^2 - x 

= (2x^3 - 2x^3) + (-4x^2 + x^2 + 3x^2 ) + (x - x) + (-1 - 5) 

= -6  

Vậy GTBT ko phụ thuộc vào biến 

a) x2 -2x -( 3x2 -5x +4 )+(2x2 - 3x +7 )

= x2 -2x - 3x2 + 5x - 4 + 2x2 - 3x +7 

= 3

Vậy biểu thức không phụ thuộc vào biến.

b) ( 2x3 -4x2 +x - 1)- (5 - x2 +2x3 ) +3x2 - x 

 =  2x3 -4x2 +x - 1 - 5 + x2 - 2x3  +3x2 - x

= -1 - 5 = -6

Vậy biểu thức không phụ thuộc vào biến x 

19 tháng 6 2018

=-( x2+2x+1+1)

=-(x+1)2-1

có (x+1)2 lớn hơn hoặc bằng 0 với mọi x

=> -(x+1)2nhỏ hơn hoặc bằng 0 với mọi x 

=>-(x+1)2-1 nhỏ hơn hoặc bằng -1 với mọi x

biểu thức đạt giá trị tuyệt đối khi x+1=0

x=-1

vậy tại x = -1 thì A= -x2 _2x _2 đạt GTLN

19 tháng 6 2018

Ta có \(A=-x^2-2x-2\)

\(=-\left(x^2+2x+2\right)\)

\(=-\left(x^2+2x+1\right)-1\)

\(=-\left(x+1\right)^2-1\)

Ta thấy \(-\left(x+1\right)^2\le0\)với mọi x nên \(-\left(x+1\right)^2-1\le-1\)với mọt x

Khi đó biểu thức A luôn có giá trị âm với mọi x 

21 tháng 2 2017

\(x^2+x+3=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) luôn dương với mọi x

------------------

\(-2x^2+3x-8=2\left(-x^2+\frac{3}{2}x-4\right)=2\left[-x^2+2.\frac{3}{4}.x-\frac{9}{16}-\frac{55}{16}\right]=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\)

\(=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\le-\frac{55}{15}< 0\) luôn âm với mọi x