Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)
b) \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2\left(x+4\right)}=\frac{3+6x}{2x+8}\)
a) \(\frac{x^3+4x^2+x-2}{x+1}=\frac{\left(x+1\right)\left(x^2+3x-2\right)}{x+1}=x^2+3x-2\)
b) \(\frac{x-3}{2x-2}+\frac{1}{x-1}=\frac{x^2-2x+1}{2x^2-4x+2}=\frac{\left(x-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x-1\right)}=\frac{1}{2}\)
ĐKXĐ bạn tự tìm nha : )
k, Ta có : \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}\)
\(=\frac{3x\left(1-2x\right)\left(1+2x\right)}{2x\left(x+4\right)\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2\left(x+4\right)}\)
j, Ta có : \(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}=\frac{x+y}{y-x}:\frac{x\left(x+y\right)}{3\left(x^2-y^2\right)}=\frac{x+y}{y-x}.\frac{3\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\)
\(=\frac{3\left(x-y\right)\left(x+y\right)}{x\left(y-x\right)}=\frac{3\left(x-y\right)\left(x+y\right)}{-x\left(x-y\right)}=\frac{-3\left(x+y\right)}{x}\)
i, Ta có : \(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}=\frac{a\left(a+b\right)}{-\left(a-b\right)}:\frac{a+b}{2\left(a^2-b^2\right)}=\frac{a\left(a+b\right)}{-\left(a-b\right)}.\frac{2\left(a-b\right)\left(a+b\right)}{a+b}\)
\(=\frac{2a\left(a+b\right)\left(a-b\right)}{-\left(a-b\right)}=-2a\left(a+b\right)\)
h, = k,
f, Ta có : \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)\left(x-6\right)}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
a) \(2x\left(4x^2-1\right)\)
\(=8x^3-2x\)
b) \(\left(6y^3+3y^2-9y\right):3y\)
\(=2y^2+y-3\)
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)
b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep
c, tt
d, cx r
a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)
\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)
\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)
\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)
a) \(\left(2x-3\right)\left(x^2-2x+1\right)+2\left(2-x\right)^3\)
\(=2x\left(x^2-2x+1\right)-3\left(x^2-2x+1\right)+2\left(2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\right)\)
\(=2x^3-4x^2+2x-3x^2+6x-3+2\left(8-12x+6x^2-x^3\right)\)
\(=2x^3-4x^2+2x-3x^2+6x-3+16-24x+12x^2-2x^3\)
\(=\left(2x^3-2x^3\right)+\left(-4x^2-3x^2+12x^2\right)+\left(2x+6x-24x\right)+\left(-3+16\right)\)
\(=5x^2-16x+13\)
b)
2x^3 - 7x^2 + 2x + 3 x^2 - 4x + 3 2x^3 - 8x^2 + 6x x^2 - 4x + 3 2x + 1 - x^2 + 4x + 3 0
Vậy \(\left(2x^3-7x^2+2x+3\right):\left(x^2-4x+3\right)=2x+1\)
Câu b thêm dấu " - " ở chỗ 2x3 - 7x2 + 2x +3 và 2x3 - 8x2 + 6x nhé :)))
a) \(\frac{3x+5}{2\left(x-1\right)}+\frac{4}{x-2}=\frac{\left(3x+5\right)\left(x-2\right)+4\cdot2\left(x-1\right)}{2\left(x-1\right)\left(x-2\right)}=\frac{3x^2-6x+5x-10+8x-8}{2\left(x-1\right)\left(x-2\right)}\)
\(=\frac{3x^2+7x-18}{2\left(x-1\right)\left(x-2\right)}\)
b) \(\frac{2x^2+1}{4x^2-2x}+\frac{3-3x}{1-2x}+\frac{3}{2x}=\frac{2x^2+1+4x\left(3-3x\right)+2\cdot3\left(1-2x\right)}{4x\left(1-2x\right)}=\frac{2x^2+1+12-12x+6-12x}{4x\left(1-2x\right)}\)\(=\frac{2x^2-24x+19}{4x\left(1-2x\right)}\)
Đề này... bạn xem lại đi. Chứ thế này thì dùng máy tính cũng không làm nổi T-T
a)
A-2B=2x2-4x+3 -2(x2+4x)
=2x2-4x+3-2x2-8x
=-12x+3
b)
A.B=(2x2-4x+3)(x2+4x)
=2x4+8x3-4x3-16x2+3x2+12x
=2x4+4x3-13x2+12x
a, \(A-2B=2x^2-4x+3-2\left(x^2+4x\right)\)
\(=2x^2-4x+3-2x^2-8x\)
\(=-12x+3\)
Phần b tương tự.