Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
\(\left(\frac{4}{9}+\frac{1}{3}\right)^2=\left(\frac{4}{9}+\frac{3}{9}\right)^2=\left(\frac{7}{9}\right)^2=\frac{49}{81}\)
\(\left(\frac{1}{2}-\frac{3}{5}\right)^3=\left(\frac{5}{10}-\frac{6}{10}\right)^3=\left(\frac{-1}{10}\right)^3=\frac{-1}{1000}\)
\(\left(\frac{-1}{5}\right)^5.\left(\frac{-6}{5}\right)^4=\frac{-5}{3125}.\frac{1296}{625}=\frac{-1296}{390625}\)
\(\left(\frac{3}{4}\right)^3:\left(\frac{3}{4}\right)^2:\left(-\frac{2}{5}\right)^3=\frac{3}{4}:\frac{-8}{125}=\frac{3}{4}.\frac{-125}{8}=\frac{-375}{32}\)
a) \(\left(-\frac{3}{4}\right)^2:\left(\frac{5}{4}\right)^2+14,7-1\frac{9}{25}\)
\(=\left[\left(-\frac{3}{4}\right):\frac{5}{4}\right]^2+\frac{147}{10}-\frac{34}{25}\)
\(=\left[\left(-\frac{3}{4}\right)\cdot\frac{4}{5}\right]^2+\frac{147}{10}-\frac{34}{25}\)
\(=\left(-\frac{3}{5}\right)^2+\frac{147}{10}-\frac{34}{25}=\frac{9}{25}+\frac{147}{10}-\frac{34}{25}=\left(\frac{9}{25}-\frac{34}{25}\right)+\frac{147}{10}=-1+\frac{147}{10}=\frac{137}{10}\)
b) \(\left(2\frac{1}{3}-1,5\right):\left(-6\frac{1}{6}+5\frac{1}{2}\right)+2,75\)
\(=\left(\frac{7}{3}-\frac{3}{2}\right):\left(-\frac{37}{6}+\frac{11}{2}\right)+\frac{11}{4}\)
\(=\frac{5}{6}:\left(-\frac{2}{3}\right)+\frac{11}{4}=\frac{5}{6}\cdot\left(-\frac{3}{2}\right)+\frac{11}{4}=-\frac{5}{4}+\frac{11}{4}=\frac{3}{2}\)
Bài 1:
a) \(0,5-\frac{5}{41}+\frac{1}{2}-\frac{36}{41}\)
\(=\frac{1}{2}-\frac{5}{41}+\frac{1}{2}-\frac{36}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{2}\right)-\left(\frac{5}{41}+\frac{36}{41}\right)\)
\(=1-1\)
\(=0.\)
b) \(\left(-\frac{2}{3}+\frac{3}{7}\right):\frac{4}{5}+\left(-\frac{1}{3}+\frac{4}{7}\right):\frac{4}{5}\)
\(=-\frac{2}{3}+\frac{3}{7}:\frac{4}{5}-\frac{1}{3}+\frac{4}{7}:\frac{4}{5}\)
\(=\left[\left(-\frac{2}{3}\right)-\frac{1}{3}\right]+\left(\frac{3}{7}+\frac{4}{7}\right):\frac{4}{5}\)
\(=\left(-1\right)+1:\frac{4}{5}\)
\(=\left(-1\right)+\frac{5}{4}\)
\(=\frac{1}{4}.\)
c) \(\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+3.\sqrt{49}}\)
\(=\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+3.7}\)
\(=\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+21}\)
\(=\left(-\frac{3}{4}\right).\sqrt{\frac{205}{9}}\)
\(=\left(-\frac{3}{4}\right).\frac{\sqrt{205}}{3}\)
\(=-\frac{\sqrt{205}}{4}.\)
d) \(\left(-\frac{1}{3}\right)^2.\frac{4}{11}+1\frac{5}{11}.\left(\frac{1}{3}\right)^2\)
\(=\frac{1}{9}.\frac{4}{11}+\frac{16}{11}.\frac{1}{9}\)
\(=\frac{1}{9}.\left(\frac{4}{11}+\frac{16}{11}\right)\)
\(=\frac{1}{9}.\frac{20}{11}\)
\(=\frac{20}{99}.\)
Chúc bạn học tốt!
ta có:
\(A=\left|-2,75\right|-3\frac{1}{3}+\frac{1}{4}\)
\(A=2,75-\frac{10}{3}+\frac{1}{4}\)
\(A=\frac{11}{4}+\frac{1}{4}-\frac{10}{3}\)
\(A=3-\frac{10}{3}\)
\(A=\frac{9}{3}-\frac{10}{3}=-\frac{1}{3}\)
VÀ
\(B=-\left(\frac{3}{5}+\frac{3}{4}\right)-\left(-\frac{3}{4}+\frac{2}{5}\right)\)
\(B=-\frac{3}{5}-\frac{3}{4}+\frac{3}{4}-\frac{2}{5}\)
\(B=-\frac{3}{5}-\frac{2}{5}=-1\)
MẶT khác: B=kA =>\(k=\frac{B}{A}\)
\(\Rightarrow k=\frac{-1}{-\frac{1}{3}}=1.3=3\)
vậy k=3