\(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)

Chứng minh A chia hết cho 3.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2015

A=(2+22)+(23+24)+...+(29+210)

=2(1+2)+23(1+2)+...+29(1+2)

=2.3+23.3+...+29.3

=3.(2+23+...+29) luôn chia hết cho 3

12 tháng 9 2015

Có: A = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 ) 

còn lại tự lm 

18 tháng 4 2019

\(P=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)

\(P=2\left[\left(1+2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)\right]\)

\(P=2\left[\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)\right]\)

\(P=2\left(2^5+1\right)\left(1+2+2^2+2^3+2^4\right)\)

Mà: \(1+2+2^2+2^3+2^4=31\Rightarrow P⋮31\left(đpcm\right)\)

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

17 tháng 11 2015

b1:

B=3+3^2+...+3^60=(3+3^2+3^3)+...+(3^58+3^59+3^60)=3(1+3+3^2)+...+3^58(1+3+3^2)=3*13+...+3^58*13=13(3+...+3^58) (CHIA HẾT CHO 13)

A=5+5^2+...+5^10=(5+5^2)+(5^3+5^4)+...+(5^9+5^10)=5(1+5)+...+5^9(1+5)=5*6+...+5^9*6=(5+...+5^9)*6(CHIA HẾT CHO 6)

B2: bạn kéo xuống dưới nãy mk thấy có ng làm r

b3: (2x+1)(y-5)=168

Ta có bảng sau: 

2x+112478121421244284168
2x01367111320234183167
x0  3   10    
y-5168  24   8    
y173  29   13    

(mấy ô mk để trống là loại vì x,y là số tự nhiên)

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

17 tháng 10 2018

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9.\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^9.3\)

\(A=3.\left(2+2^3+...+2^9\right)⋮3\)

17 tháng 10 2018

A = 2 + 2+...+ 210 ( có 10 số hạng)

A = (2+22 ) +( 23+24) + ...+ (29+210

A = 2.(1+2) + 23.(1+2) + ...+ 29.(1+2)

 A = 2.3 + 23.3 + ...+ 29.3

A = 3.(2+23 +...+29) chia hết cho 3

20 tháng 12 2017

\(S=1+2+2^2+2^3+...+2^{11}\)

\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)

\(=3+3\cdot2^2+3\cdot2^4+3\cdot2^6+3\cdot2^8+3\cdot2^{10}\)

\(=3\left(1+2^2+2^4+2^6+2^8+2^{10}\right)⋮3\)

20 tháng 12 2017

S= (1+2)+22(1+2)+24(1+2)+26(1+2)+28(1+2)+210(1+2)

S=3(1+22+24+26+28+210)

suy ra S chia hết cho 3

11 tháng 12 2017

=>A=2(2+1) + 2^3(2+1) + 2^5(2+1) + 2^7(2+1) + 2^9(2+1)

=>A=3(2+2^3+2^5+2^7+2^9) chia hết cho 3

7 tháng 12 2018

có chia hết cho 3 đấy