Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có A=2(1+2)+2^3(1+2)+..+2^2019(1+2)
=2.3+2^3.3+...+2^2019.3
=3(2+2^3+...+2^2019)⋮3
Có A=2(1+2+2^2+2^3+2^4)+...+2^2016(1+2+2^2+2^3+2^4)
=2.31+.....+2^2016.31
=31.(2+....+2^2016)⋮31
vì : A=(2+22)+...........+(259+260)
=2.(1+2)+..........+259.(1+2)
=3.(2+23+...........+259)
=> A chia hết cho 3
A=1+2+22+23+...+211
=> A= (1+2)+(22+23)+...+(210+211)
=> A= 3+22.(1+2) + ...+ 210.(1+2)
=> A= 3+22.3+...+210.3
=> A= 3.(1+22+...+210) chia het cho 3
=> A chia hết cho 3
\(A=1+2+2^2+2^3+............+2^{11}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{10}\right)\)
\(=3\cdot\left(1+2^2+...+2^{10}\right)⋮3\)
=>đpcm
Ta có: \(A=2+2^2+2^3+...+2^{10}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^9+2^{10}\right)\)
\(\Leftrightarrow A=6+2^2\left(2+2^2\right)+..+2^8\left(2+2^2\right)\)
\(\Leftrightarrow A=6+2^2.6+...+2^8.6\)
\(\Leftrightarrow A=6\left(1+2^2+...+2^8\right)\)
Vì \(6⋮3\)
\(\Rightarrow A=6\left(1+2^2+..+2^8\right)⋮3\)
Vậy \(A⋮3\)
hok tốt !!!
a,
a= 21 + 22 + 23 + ....+ 230
a= ( 21+22 ) + (23 + 24 ) + ...+ ( 229 + 230 )
a = 21 (1+2) + 23(1+2) + ...+ 229(1+2)
a = 21.3 + 23 .3 + ...+ 229 .3
a = 3 ( 21 + 23 + ..+ 229 ) \(⋮\) 3
Vậy a chia hết cho 3
a = 21 + 22 + 23 + ....+ 230
a = ( 21 + 22 + 23 ) + ....+ ( 228 + 229 + 230 )
a = 21(1+2+22) + .....+ 228(1+2+22 )
a = 21 . 7 + ...+ 228.7
a = 7 (21 + ..+228) \(⋮\) 7
Vậy a chia hết cho 7
Vì a chia hết cho 3 và 7 nên a sẽ chia hết cho 21
b,
a = 88 + 220
a = (23)8 + 220
a = 224 + 220
a = 220 . 24 + 220
a=220(24 + 1)
a= 220 . 17 \(⋮\) 17
=> đpcm
Ta có:A=2100+2101+...+2108+2109=(2100+2101)+...+(2108+2109)
=(2100.1+2100.2)+...+(2108.1+2108.2)
=2100.(1+2)+...+2108.(1+2)
=3.(2100+...+2108) chia hết cho 3
=>A chia hết cho 3