Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do dãy A có 90 số hạng nên khi ta nhóm 3 số hạng thành 1 nhóm sẽ vừa đủ 30 nhóm và không dư ra số nào.
A = (2^1+2^2+2^3)+(2^4+2^5+2^6)+...+(2^88+2^89+2^90)
= 2(1+2+2^2)+2^4(1+2+2^2)+...+2^88(1+2+2^2)
= 2.7+2^4.7+...+2^88.7
= 7(2+2^4+...+2^88) chia hết cho 7
Ta có : A = 2^1 + 2^2 + 2^3 + ... + 2^89 + 2^90
2A = 2^2 + 2^3 + 2^4 + ... + 2^90 + 2^91
2A - A = (2^2 + 2^3 + 2^4 + ... + 2^90 + 2^91) - (2^1 + 2^2 + 2^3 + ... + 2^89 + 2^90)
A = 2^91 - 2
Do dãy A có 90 số hạng nên khi ta nhóm 3 số hạng thành 1 nhóm sẽ vừa đủ 30 nhóm và không dư ra số nào.
A = (2^1+2^2+2^3)+(2^4+2^5+2^6)+...+(2^88+2^89+2^90)
= 2(1+2+2^2)+2^4(1+2+2^2)+...+2^88(1+2+2^2)
= 2.7+2^4.7+...+2^88.7
= 7(2+2^4+...+2^88) chia hết cho 7
Ta có : A = 2^1 + 2^2 + 2^3 + ... + 2^89 + 2^90
2A = 2^2 + 2^3 + 2^4 + ... + 2^90 + 2^91
2A - A = (2^2 + 2^3 + 2^4 + ... + 2^90 + 2^91) - (2^1 + 2^2 + 2^3 + ... + 2^89 + 2^90)
A = 2^91 - 2
\(A=2^1+2^2+2^3+...+2^{90}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{88}+2^{89}+2^{90}\right)\)
\(=2^1\left(1+2+2^2\right)+...+2^{88}\left(1+2+2^2\right)\)
\(=2^1\cdot7+...+2^{88}\cdot7\)
\(=7\left(2^1+...+2^{88}\right)⋮7\)
Nguyễn Huy Thắng cau dung goi to bang may va tao duoc ko dattebayo?
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
a)đặt tên biểu thức là C . Ta có :
C = 1 + 4 + 42 + 43 + ... + 42012
C = ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 42010 + 42011 + 42012 )
C = 21 + 43 . ( 1 + 4 + 42 ) + ... + 42010 . ( 1 + 4 + 42 )
C = 21 + 43 . 21 + ... + 42010 . 21
C = 21 . ( 1 + 43 + ... + 42010 )
=> C chia hết cho 21
b) đặt tên biểu thức là B . Ta có :
B = 1 + 7 + 72 + ... + 7101
B = ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 )
B = 8 + 72 . ( 1 + 7 ) + ... + 7100. ( 1 + 7 )
B = 8 + 72 . 8 + ... + 7100 . 8
B = 8 . ( 1 + 72 + ... + 7100 )
=> B chia hết cho 8
tương tự
A=(2^1+2^2+2^3)+...+(2^88+2^89+2^90)
=2x(2^0+2^1+2^2)+...+2^88x(2^0+2^1+2^2)
=2x7+...+2^88x7
=7x(2+...+2^88)
Vậy A chia hết cho 7
Viết lại, ta có :
\(A=2^1+2^2+2^3+2^4+2^5+...+2^{90}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{88}+2^{89}+2^{90}\right)\)
\(=2^1\left(1+2+4\right)+...+2^{88}\left(1+2+4\right)\)
\(=2^1\times7+...+2^{88}\times7\)
\(=7\left(2^1+...+2^{88}\right)⋮7\)
Vậy A chia hết cho 7