K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2022

a) Nhận thấy : 2;22;23;...;220 đều chia hết cho 2 

=> A=2+22+23+...+220 ⋮ 2

b) Ta có :

A = (2+22)+(23+24)+...+(219+220)

=> A = 2.(1+2)+23.(1+2)+...+219.(1+2)

=> A = 2.3+23.3+...+219.3

=> A = 3.(2+23+...+219) ⋮ 3

c) tương tự phần b

6 tháng 4 2017

1/a)Ta có: A = 2 + 22 + 23 + ... + 260

= (2 + 22) + (23+24) + ... + (259 + 560)

= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)

= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)

= 2.3 + 23.3 + ... + 259.3

= 3.(2 + 23 + ... + 259) \(⋮\) 3

Vậy A \(⋮\) 3.

b) Tương tự: gộp 3.

c) gộp 4

6 tháng 4 2017

Bài 1:

a, A = 2 + 22 + 23 + ... + 260

= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )

= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )

= 2 . 3 + 23 . 3 + ... + 259 . 3

= 3 . ( 2 + 23 + ... + 259 )

Vậy A chia hết cho 3

b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )

= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)

= 2. 7 + 24 . 7 + ... + 258 . 7

= 7 . ( 2 + 24 + ... + 258 )

Vậy A chia hết cho 7

c, Ta có:

A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )

= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )

= 2. 15 + ............ + 257 . 15

= 15 . ( 2 + ...............+ 257 )

Vậy A chia hết cho 15

2 tháng 11 2016

Chọn

Giải ra đầy đủ nhá

2 tháng 11 2016

Ôi tr. Ý mk mún nói là giải bài ra cho mình

1 tháng 9 2017

mk biết làm câu a thôi :(

1 tháng 9 2017

mình cũng chỉ làm được câu a thôi. hì hì

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.