K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2024

HHehe

12 tháng 11 2015

Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau  ma khoe.

8 tháng 1 2021

A=(1+11+11.1

thôi cậu tự làm dễ mà

13 tháng 8 2023

a) P = 5 + 5² + 5³ + ... + 5²⁰

= 5(1 + 5 + 5² + ... + 5¹⁹) ⋮ 5

Vậy P ⋮ 5

b) P = 5 + 5² + 5³ + ... + 5²⁰

= 5.(1 + 5) + 5³.(1 + 5) + ... + 5¹⁹.(1 + 5)

= 6.(5 + 5³ + ... + 5¹⁹) ⋮ 6

Vậy P ⋮ 6

c) P = 5 + 5² + 5³ + 5⁴ + ... + 5¹⁷ + 5¹⁸ + 5¹⁹ + 5²⁰

= 5.(1 + 5 + 5² + 5³) + ... + 5¹⁷.(1 + 5 + 5² + 5³)

= 5.156 + ... + 5¹⁷.156

= 156.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷)

= 13.12.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷) ⋮ 13

Vậy P ⋮ 13

a: P=5(1+5+5^2+...+5^19) chia hết cho 5

b: P=5(1+5)+5^3(1+5)+...+5^19(1+5)

=6(5+5^3+...+5^19) chia hết cho 6

c: P=5(1+5+5^2+5^3)+...+5^17(1+5+5^2+5^3)

=156(5+5^5+5^9+5^13+5^17) chia hết cho 13

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

22 tháng 10 2023

\(A=2+2^2+2^3+...+2^{20}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{19}\right)⋮3\)

\(A=2+2^2+2^3+...+2^{20}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{17}\right)⋮5\)

30 tháng 9 2017

a) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)

\(\Rightarrow A=6+...+2^{118}.6\)

\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)

b) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)

\(\Rightarrow A=14+...+2^{117}.14\)

\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)

`#3107.101107`

a,

\(C=2+2^3+2^5+...+2^{23}\)

\(=\left(2+2^3+2^5\right)+\left(2^5+2^7+2^9\right)+...+\left(2^{19}+2^{21}+2^{23}\right)\)

\(=2\left(1+2^2+2^4\right)+2^5\cdot\left(1+2^2+2^4\right)+...+2^{19}\cdot\left(1+2^2+2^4\right)\)

\(=\left(1+2^2+2^4\right)\cdot\left(2+2^5+...+2^{19}\right)\)

\(=21\cdot\left(2+2^5+...+2^{19}\right)\)

Vì \(21\text{ }⋮\text{ }21\)

\(\Rightarrow21\left(2+2^5+...+2^{19}\right)\text{ }⋮\text{ }21\)

Vậy, \(C\text{ }⋮\text{ }21\)

b,

\(C=2+2^3+2^5+...+2^{23}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{21}+2^{23}\right)\)

\(=\left(2+2^3\right)+2^4\cdot\left(2+2^3\right)+...+2^{20}\cdot\left(2+2^3\right)\)

\(=\left(2+2^3\right)\cdot\left(1+2^4+...+2^{20}\right)\)

\(=10\cdot\left(1+2^4+...+2^{20}\right)\)

Vì \(10\text{ }⋮\text{ }10\)

\(\Rightarrow10\cdot\left(1+2^4+...+2^{20}\right)\text{ }⋮\text{ }10\)

Vậy, \(C\text{ }⋮\text{ }10.\)

13 tháng 10 2023

a) c = 2 + 2³ + 2⁵ + ... + 2¹⁹ + 2²¹ + 2²³

= (2 + 2³ + 2⁵) + (2⁷ + 2⁹ + 2¹¹) + ... + (2¹⁹ + 2²¹ + 2²³)

= 2.(1 + 2² + 2⁴) + 2⁷.(1 + 2² + 2⁴) + ... + 2¹⁹.(1 + 2² + 2⁴)

= 2.21 + 2⁷.21 + ... + 2¹⁹.21

= 21.(2 + 2⁷ + ... + 2¹⁹) ⋮ 21

Vậy c ⋮ 21

b) c = 2 + 2³ + 2⁵ + 2⁷ + ... + 2²¹ + 2²³

= (2 + 2³) + (2⁵ + 2⁷) + ... + (2²¹ + 2²³)

= 10 + 2⁴.(2 + 2³) + ... + 2²⁰.(2 + 2³)

= 10 + 2⁴.10 + ... + 2²⁰.10

= 10.(1 + 2⁴ + ... + 2²⁰) ⋮ 10

Vậy c ⋮ 10