K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2022

Ta có:

\(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\\ =2\left(1+2+2^2+2^3+...+2^{58}+2^{59}\right)\\ 2⋮2\Rightarrow2\left(1+2+2^2+2^3+...+2^{58}+2^{59}\right)⋮2\Rightarrow A⋮2\)

\(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\\ 3\left(2+2^3+...+2^{59}\right)\\ Vì...3⋮3\Rightarrow3\left(2+2^3+...+2^{59}\right)⋮3\\ \Rightarrow A⋮3\)

2;3 nguyên tố cùng nhau nên A chia hết cho 2 và 3 thì A chia hết cho 2 x 3 = 6.

Hay A ⋮ 6 (đpcm).

b.

\(A=2+2^2+2^3+...+2^{58}+2^{59}+2^{60}\\ =2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\\ =7.2+...+7.2^{58}\\ =7\left(2+2^4+2^7+...+2^{58}\right)\\ Vì...7⋮7\Rightarrow7\left(2+2^4+2^7+...+2^{58}\right)⋮7\\ \Rightarrow A⋮7.đpcm\)

 

 

16 tháng 10 2022

A = 2 + 22 + 23 +.....+ 260

A = (2 + 22) + ( 23+ 24)+....+(259+ 260)

A = 6 + 22.( 2+22) + ....+ 258.( 2 + 22)

A = 6 + 22. 6 + .....+ 258. 6

A = 6. ( 1 + 22+ ....+ 258)

vì 6 ⋮ 6 ⇔ 6. ( 1 + 22 +....+258) ⋮ 6 ⇔ A ⋮ 6 (đpcm)

b, A = 2 + 22 + 23 + ....+260

    A = (2+22 + 23) + (24+25+26)+.....+(258+259+260)

A = 2.( 1 + 2+22) + 24.(1+ 2+22)+....+258.(1 + 2 + 22)

A = 2.7 + 24.7 + .....+ 258 .7

A = 7.(2 + 24 +....+258)

vì 7 ⋮ 7 ⇔ 7.(2 + 24 +....+258) ⇔ A ⋮ 7 (đpcm)

 

 

28 tháng 12 2015

a)116+115=(..................1)+(..................1)=..........................2

Vì có chữ số tận cùng là 2 nên chia hết cho 4

28 tháng 12 2015

Bài này thì chắc phải dùng đồng dư -_-

a) Ta có: 

11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5  = -1 (mod 4) => 115 + 1 chia hết cho 4 

=> 116 đồng dư với (-1)6 (mod 4)

=> 116 đồng dư với 1 (mod 4)

=> 116 - 1 chia hết cho 4

=> (116 - 1) + (115 + 1) chia hết cho 4

=> 116 + 115 chia hết cho 4

23 tháng 12 2024

HHehe

NM
16 tháng 8 2021

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7

\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.

\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)

mà 91 chia hết cho 13 nên B chia hết cho 13.

\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.

D : để ý rằng \(11^k\) đều có đuôi là 1 

nên D có đuôi là đuôi của \(1+1+..+1=10\)

Vậy D chia hết cho 5

14 tháng 8 2024

Dễ mà bn tự làm đi

30 tháng 9 2017

a) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)

\(\Rightarrow A=6+...+2^{118}.6\)

\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)

b) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)

\(\Rightarrow A=14+...+2^{117}.14\)

\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

4 tháng 1 2017

Mình chỉ làm được ý 3 thôi: 

4 tháng 1 2017

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

1 tháng 12 2023

a) \(A=2+2^2+2^3+\dots+2^{60}\)

\(2A=2^2+2^3+2^4+\dots+2^{61}\)

\(2A-A=\left(2^2+2^3+2^4+\dots+2^{61}\right)-\left(2+2^2+2^3+\dots+2^{60}\right)\)

\(A=2^{61}-2\)

Vậy: \(A=2^{61}-2\).

b)

+) \(A=2+2^2+2^3+\dots+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+\dots+\left(2^{59}+2^{60}\right)\)

\(=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+2^5\cdot\left(1+2\right)+\dots+2^{59}\cdot\left(1+2\right)\)

\(=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{59}\cdot3\)

\(=3\cdot\left(2+2^3+2^5+\dots+2^{59}\right)\)

Vì \(3\cdot\left(2+2^3+2^5+\dots+2^{59}\right)⋮3\) nên \(A⋮3\)

+) \(A=2+2^2+2^3+\dots+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}\right)+\dots+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\cdot\left(1+2+2^2+2^3\right)+2^5\cdot\left(1+2+2^2+2^3\right)+2^9\cdot\left(1+2+2^2+2^3\right)+\dots+2^{57}\cdot\left(1+2+2^2+2^3\right)\)

\(=2\cdot15+2^5\cdot15+2^9\cdot15+\dots+2^{57}\cdot15\)

\(=15\cdot\left(2+2^5+2^9+\dots+2^{57}\right)\)

Vì \(15⋮5\) nên \(15\cdot\left(2+2^5+2^9+\dots+2^{57}\right)⋮5\)

hay \(A\vdots5\)

+) \(A=2+2^2+2^3+\dots+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+\dots+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+2^7\cdot\left(1+2+2^2\right)+\dots+2^{58}\cdot\left(1+2+2^2\right)\)

\(=2\cdot7+2^4\cdot7+2^7\cdot7+\dots+2^{58}\cdot7\)

\(=7\cdot\left(2+2^4+2^7+\dots+2^{58}\right)\)

Vì \(7\cdot\left(2+2^4+2^7+\dots+2^{58}\right)⋮7\) nên \(A⋮7\)

$Toru$

1 tháng 12 2023

a) �=2+22+23+⋯+260A=2+22+23++260

2�=22+23+24+⋯+2612A=22+23+24++261

2�−�=(22+23+24+⋯+261)−(2+22+23+⋯+260)2AA=(22+23+24++261)(2+22+23++260)

�=261−2A=2612

Vậy: �=261−2A=2612.

b)

+) �=2+22+23+⋯+260A=2+22+23++260

=(2+22)+(23+24)+(25+26)+⋯+(259+260)=(2+22)+(23+24)+(25+26)++(259+260)

=2⋅(1+2)+23⋅(1+2)+25⋅(1+2)+⋯+259⋅(1+2)=2(1+2)+23(1+2)+25(1+2)++259(1+2)

=2⋅3+23⋅3+25⋅3+⋯+259⋅3=23+233+253++2593

=3⋅(2+23+25+⋯+259)=3(2+23+25++259)

Vì 3⋅(2+23+25+⋯+259)⋮33(2+23+25++259)3 nên �⋮3A3

+) �=2+22+23+⋯+260A=2+22+23++260

=(2+22+23+24)+(25+26+27+28)+(29+210+211+212)+⋯+(257+258+259+260)=(2+22+23+24)+(25+26+27+28)+(29+210+211+212)++(257+258+259+260)

=2⋅(1+2+22+23)+25⋅(1+2+22+23)+29⋅(1+2+22+23)+⋯+257⋅(1+2+22+23)=2(1+2+22+23)+25(1+2+22+23)+29(1+2+22+23)++257(1+2+22+23)

=2⋅15+25⋅15+29⋅15+⋯+257⋅15=215+2515+2915++25715

=15⋅(2+25+29+⋯+257)=15(2+25+29++257)

Vì 15⋮5155 nên 15⋅(2+25+29+⋯+257)⋮515(2+25+29++257)5

hay �⋮5A5

+) �=2+22+23+⋯+260A=2+22+23++260

=(2+22+23)+(24+25+26)+(27+28+29)+⋯+(258+259+260)=(2+22+23)+(24+25+26)+(27+28+29)++(258+259+260)

=2⋅(1+2+22)+24⋅(1+2+22)+27⋅(1+2+22)+⋯+258⋅(1+2+22)=2(1+2+22)+24(1+2+22)+27(1+2+22)++258(1+2+22)

=2⋅7+24⋅7+27⋅7+⋯+258⋅7=27+247+277++2587

=7⋅(2+24+27+⋯+258)=7(2+24+27++258)

Vì 7⋅(2+24+27+⋯+258)⋮77(2+24+27++258)7 nên �⋮7A7

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn