Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có vế trái : \(\dfrac{x^2+y^2+2xy-\left(z^2+2zt+t^2\right)}{x+y-z-t}\)
\(=\dfrac{\left(x+y\right)^2-\left(z+t\right)^2}{x+y-z-t}\)
\(=\dfrac{\left(x+y-z-t\right)\left(x+y+z+t\right)}{x+y-z-t}=x+y+z+t\) (1)
Vế phải : \(\dfrac{x^2+z^2+2zt-\left(y^2+2yt+t^2\right)}{x-y+z-t}\)
\(=\dfrac{\left(x+z-y-t\right)\left(x+y+z+t\right)}{x-y+z-t}=x+y+z+t\)(2)
Từ (1)và (2)\(\Rightarrow\left(đpcm\right)\)
17) 1.x - 1 - 3.x . 2.x .3 -1 = 2.x.x.2 + x + 1
<=> x- 1 -18.x2 -1 = 4.x2 + x + 1
<=> x- 18.x2 -2 -4.x2 -x - 1 = 0
<=> 18.x2 = -3
Phương trình vô nghiệm vì 18.x2 \(\ge\)0 \(\forall\)x
Vậy x \(\in\varnothing\)
18) 1.x - 1 + 2.x.2 - 5.x.3 - 1 = 4.x.2 + x + 1
<=> -12.x - 2 = 9.x+ 1
<=> -21 . x = 3
<=> x = \(-\frac{1}{7}\)
Vậy x = \(-\frac{1}{7}\)
19 ) x + 42.x.2 - 5.x + 2 + x + 12.x .2 - 7.x + 3 = 2.x + 52.x.2 -7.x + 3
<=> 98.x + 5 = 99.x + 3
<=> x = 2
Vậy x = 2
20 ) x + 1.x.2 + x + 1 - x - 1.x.2 - x + 1 = 3. x . ( x . 4 + x.2 + 1 )
<=> 2 = 12.x2 + 6.x2 + 3.x
<=> 18 .x2 + 3.x -2 = 0
<=> \(\orbr{\begin{cases}x=-\frac{1}{12}-\frac{\sqrt{17}}{12}\\x=-\frac{1}{12}+\frac{\sqrt{17}}{12}\end{cases}}\)
chj thông cảm cho em nha
em lp 6
chúc chj HT
ĐKXĐ: x≥0;x≠1x≥0;x≠1
P=15√x−11(√x−1)(√x+3)−(3√x−2)(√x+3)(√x−1)(√x+3)−(2√x+3)(√x−1)(√x−1)(√x+3)P=15x−11(x−1)(x+3)−(3x−2)(x+3)(x−1)(x+3)−(2x+3)(x−1)(x−1)(x+3)
=15√x−11−3x−7√x+6−2x−√x+3(√x−1)(√x+3)=15x−11−3x−7x+6−2x−x+3(x−1)(x+3)
=−5x+7√x−2(√x−1)(√x+3)=−(√x−1)(5√x−2)(√x−1)(√x+3)=2−5√x√x+3=−5x+7x−2(x−1)(x+3)=−(x−1)(5x−2)(x−1)(x+3)=2−5xx+3
P=12⇒2−5√x√x+3=12⇒4−10√x=√x+3P=12⇒2−5xx+3=12⇒4−10x=x+3
⇒11√x=1⇒√x=111⇒x=1121⇒11x=1⇒x=111⇒x=1121
P=17−5(√x+3)√x+3=−5+17√x+3P=17−5(x+3)x+3=−5+17x+3
Do √x+3≥3⇒−5+17√x+3≤−5+173=23x+3≥3⇒−5+17x+3≤−5+173=23
Pmax=23Pmax=23 khi x=0x=0, hình như bạn nhầm đề, ko có GTNN đâu, chỉ có GTLN thôi
P=−5+17√x+3⇒P=−5+17x+3⇒ để P nguyên thì √x+3=Ư(17)x+3=Ư(17)
Mà √x+3≥3⇒√x+3=17x+3≥3⇒x+3=17
⇒√x=14⇒x=196