Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=1+4+42+43+…+42012
=>A=(1+4+42)+(43+44+45)+…+(42010+42011+42012)
=>A=(1+4+42)+43.(1+4+42)+…+42010.(1+4+42)
=>A=21+43.21+…+42010.21
=>A=(1+43+…+42010).21 chia hết cho 21
Vậy A chia hết cho 21
A = \(1+4+4^2+...+4^{2012}\)
A = \(\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
A = \(1.21+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
A = \(1.21+4^3.21+...+4^{2010}.21\)
A = \(21.\left(1+4^3+...+4^{2010}\right)\)chia hết cho 21
4a=4+42+43+......+42013
4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)
3a=42013-1
a=42013-1
3
1) ta có A= 4+4^2 +4^3 +4^4 +...+4^120 =( 4+ 4^2 )+ (4^3+4^4) +...+ (4^119+4^120)
=4.(1+4) +4^3.(1+4) +...+4^119.(1+4) = (1+4).(4+4^3+...+4^119) =5 .(4+4^3+..+4^119)
mà 4+4^3+4^119 chia hết cho 4 , UCLN(4,5)=1 =>5.(4+4^3+...+4^119) chia het cho 20 => A chia het cho 20
2) ta coA= 4+4^2+4^3 +...+4^120 = (4+4^2+4^3) +...+ (4^118+4^119+4^120)
=4.(1+4+4^2)+...+4^118.(1+4+4^2) = 21.( 4+..+4^118) chia het cho 21 => A chia het cho 21
do A chia het cho 20, 21 mà UCLN(20,21) =1 nên A chia hết cho 20 .21 => A chia hết cho 420
Nhóm 3 số vào
A = 1+4+42+....+42000
A = (1+4+42)+(43+44+45)+....+(41998+41999+42000)
A = 1.(1+4+42) + 43.(1+4+42) +.....+ 41998.(1+4+42)
A = 1.21 + 43.21 +....+ 41998.21
A = 21.(1+43+.....+41998) chia hết cho 21
=> A chia hết cho 21 (đpcm)
Ta có: A = 1 + 4 + 42 + ... + 42000
=> A = (1 + 4 + 42) + (43 + 44 + 45) + ..... + (41998 + 41999 + 42000)
=> A = 21 + 43.(1 + 4 + 16) + ..... + 41997.(1 + 4 + 16)
=> A = 21 . 1 + 43.21 + ..... + 41996.21
=> A = 21.( 1 + 43 + .... + 41996) chia hết cho 21 (đpcm)
Ta có: A=1+4+42+…+42012
=>A=(1+4+42)+…+(42010+42011+42012)
=>A=1.(1+4+42)+…+42010.(1+4+42)
=>A=1.21+…+42010.21
=>A=(1+…+42010).21 chia hết cho 21
Vậy A chia hết cho 21